Exercise 15.2.5

Here is Abel’s proof of the addition law for φ .

(a)
Let g ( x , y ) be differentiable on 2 , and set h ( u , v ) = g ( 1 2 ( u + v ) , 1 2 ( u v ) ) . Use the chain Rule to prove that ∂h ∂v ( u , v ) = 1 2 ∂g ∂x ( 1 2 ( u + v ) , 1 2 ( u v ) ) 1 2 ∂g ∂y ( 1 2 ( u + v ) , 1 2 ( u v ) . )

(b)
Use part (a) to show that g ( x , y ) = g ( x + y , 0 ) on, 2 if and only if ∂g ∂x = ∂g ∂y on 2 .
(c)
Prove the addition law for φ by applying part (b) to g ( x , y ) = φ ( x ) φ ( y ) + φ ( y ) φ ( x ) 1 + φ 2 ( x ) φ 2 ( y ) .

Part (d) of Exercise 3 will be useful.

Answers

Proof. (a) To apply the Chain Rule, we suppose that g is continuously differentiable ( g C 1 ( 2 ) ). Write x , y : 2 2 the two maps defined by

x ( u , v ) = 1 2 ( u + v ) , y ( u , v ) = 1 2 ( u v ) ,

Then

∂x ∂v ( u , v ) = 1 2 , ∂y ∂v ( u , v ) = 1 2 ,

and

h ( u , v ) = g ( x ( u , v ) , y ( u , v ) ) , ( u , v ) 2 .

The Chain Rule gives

∂h ∂v ( u , v ) = ∂g ∂x ( x ( u , v ) , y ( u , v ) ) ∂x ∂v ( u , v ) + ∂g ∂y ( x ( u , v ) , y ( u , v ) ) ∂y ∂v ( u , v ) = 1 2 ∂g ∂x ( 1 2 ( u + v ) , 1 2 ( u v ) ) 1 2 ∂g ∂y ( 1 2 ( u + v ) , 1 2 ( u v ) ) (b)

Suppose that g ( x + y , 0 ) = g ( x , y ) for all x , y . Write f ( x ) = g ( x , 0 ) . Then f is continuously differentiable, and g ( x , y ) = f ( x + y ) . By the Chain Rule, for all ( x , y ) 2 ,

∂g ∂x ( x , y ) = f ( x + y ) = ∂g ∂y ( x , y ) ,

therefore ∂g ∂x = ∂g ∂y on 2 .

Conversely, suppose that ∂g ∂x = ∂g ∂y on 2 . Then, for all ( u , v ) 2 ,

∂h ∂v ( u , v ) = 1 2 ∂g ∂x ( 1 2 ( u + v ) , 1 2 ( u v ) ) 1 2 ∂g ∂y ( 1 2 ( u + v ) , 1 2 ( u v ) ) = 0 .

This means that for every fixed u 0 , the map v h ( u 0 , v ) has a null derivative, thus is constant: h ( u 0 , v ) = h ( u 0 , 0 ) for all v . Since this is true for every u 0 , we obtain

h ( u , v ) = h ( u , 0 ) , for all  u , v .

Write f ( u ) = h ( u , 0 ) for all u . Then f is continuously differentiable, and for all u , v , h ( u , v ) = f ( u ) depends only of u .

By definition of h , this means that, for all u , v ,

g ( 1 2 ( u + v ) , 1 2 ( u v ) ) = f ( u ) .

Taking v = u in g ( 1 2 ( u + v ) , 1 2 ( u v ) ) = h ( u , v ) = h ( u , 0 ) , we obtain g ( u , 0 ) = h ( u , u ) = h ( u , 0 ) , therefore

g ( u , 0 ) = h ( u , u ) = h ( u , 0 ) = h ( u , v ) = g ( 1 2 ( u + v ) , 1 2 ( u v ) ) ,

thus

g ( u , 0 ) = g ( 1 2 ( u + v ) , 1 2 ( u v ) ) , u , v .

If ( x , y ) is any pair in 2 , there exists a unique pair ( u , v ) 2 such that x = 1 2 ( u + v ) , y = 1 2 ( u v ) , given by u = x + y , v = x y . Therefore, the preceding equality implies that

g ( x + y , 0 ) = g ( x , y ) , x , y .

(c) Define g : 2 by

g ( x , y ) = φ ( x ) φ ( y ) + φ ( y ) φ ( x ) 1 + φ 2 ( x ) φ 2 ( y ) .

The partial derivative of this quotient relative to the variable x gives, using φ ( x ) = 2 φ 3 ( x ) (see Exercise 3, part (d)), and φ ( x ) 2 = 1 φ 4 ( x )

( 1 + φ 2 ( x ) φ 2 ( y ) ) 2 ∂g ∂x ( x , y ) = ( φ ( x ) φ ( y ) + φ ( y ) φ ( x ) ) ( 1 + φ 2 ( x ) φ 2 ( y ) ) 2 φ ( x ) φ ( x ) φ 2 ( y ) ( φ ( x ) φ ( y ) + φ ( y ) φ ( x ) ) = ( φ ( x ) φ ( y ) 2 φ ( y ) φ 3 ( x ) ) ( 1 + φ 2 ( x ) φ 2 ( y ) ) 2 φ ( x ) φ ( x ) φ 2 ( y ) ( φ ( x ) φ ( y ) + φ ( y ) φ ( x ) ) = φ ( x ) φ ( y ) + φ ( x ) φ ( y ) φ 2 ( x ) φ 2 ( y ) 2 φ ( y ) φ 3 ( x ) 2 φ 3 ( y ) φ 5 ( x ) 2 φ 2 ( x ) φ 2 ( y ) φ ( x ) φ ( y ) 2 φ ( x ) φ 3 ( y ) φ ( x ) 2 = φ ( x ) φ ( y ) + φ ( x ) φ ( y ) φ 2 ( x ) φ 2 ( y ) 2 φ ( y ) φ 3 ( x ) 2 φ 3 ( y ) φ 5 ( x ) 2 φ 2 ( x ) φ 2 ( y ) φ ( x ) φ ( y ) 2 φ ( x ) φ 3 ( y ) ( 1 φ 4 ( x ) ) = φ ( x ) φ ( y ) + φ ( x ) φ ( y ) φ 2 ( x ) φ 2 ( y ) 2 φ ( y ) φ 3 ( x ) 2 φ ( x ) φ 3 ( y ) 2 φ 2 ( x ) φ 2 ( y ) φ ( x ) φ ( y ) .

This last expression is symmetric relatively to x , y , and also the denominator ( 1 + φ 2 ( x ) φ 2 ( y ) ) 2 . Since g ( x , y ) = g ( y , x ) = φ ( y ) φ ( x ) + φ ( x ) φ ( y ) 1 + φ 2 ( y ) φ 2 ( x ) , this proves that

( 1 + φ 2 ( y ) φ 2 ( x ) ) ∂g ∂y ( x , y ) = φ ( y ) φ ( x ) + φ ( y ) φ ( x ) φ 2 ( y ) φ 2 ( x ) 2 φ ( x ) φ 3 ( y ) 2 φ ( y ) φ 3 ( x ) 2 φ 2 ( y ) φ 2 ( x ) φ ( y ) φ ( x ) = ( 1 + φ 2 ( x ) φ 2 ( y ) ) ∂g ∂x ( x , y ) ,

where 1 + φ 2 ( y ) φ 2 ( x ) > 0 . Therefore ∂g ∂x = ∂g ∂y on 2 .

By part (b), g ( x , y ) = g ( x + y , 0 ) . Using φ ( 0 ) = 0 , and φ ( 0 ) = 1 φ 4 ( 0 ) = 1 ,

g ( x , y ) = g ( x + y , 0 ) = φ ( 0 ) φ ( x + y ) = φ ( x + y ) .

We have proved the addition law for φ :

φ ( x + y ) = φ ( x ) φ ( y ) + φ ( y ) φ ( x ) 1 + φ 2 ( x ) φ 2 ( y ) , x , y .

User profile picture
2022-07-19 00:00
Comments