Exercise 15.2.6

Show that the subtraction law

φ ( x y ) = φ ( x ) φ ( y ) φ ( y ) φ ( x ) 1 + φ 2 ( x ) φ 2 ( y ) .

follows from the addition law together with (15.9) and Exercise 3.

Answers

Proof. Starting from the Addition Law for φ

φ ( x + y ) = φ ( x ) φ ( y ) + φ ( y ) φ ( x ) 1 + φ 2 ( x ) φ 2 ( y ) , x , y ,

we obtain for all x , y , substituting y to y ,

φ ( x y ) = φ ( x ) φ ( y ) + φ ( y ) φ ( x ) 1 + φ 2 ( x ) φ 2 ( y ) .

Since φ is odd, and φ even (see 15.9 and Exercise 3), we obtain

φ ( x y ) = φ ( x ) φ ( y ) φ ( y ) φ ( x ) 1 + φ 2 ( x ) φ 2 ( y ) .

User profile picture
2022-07-19 00:00
Comments