Exercise 15.2.7

The proof of Theorem 15.2.5 uses induction on n .

(a)
Assume that n is even. In (15.18), we gave a formula for Q n + 1 ( u ) in terms of Q n ( u ) and Q n 1 ( u ) . Derive the corresponding formula for P n + 1 ( u ) .
(b)
Suppose that polynomials P n ( u ) , Q n ( u ) satisfy all of the conditions of the theorem except for the requirement that they be relatively prime. Since [ u ] is a UFD , we can write P n ( u ) = C n ( u ) P ~ n ( u ) , Q n ( u ) = C n ( u ) Q ~ n ( u ) , where C n ( u ) , P ~ n ( u ) , Q ~ n ( u ) [ u ] and P ~ n ( u ) , Q ~ n ( u ) are relatively prime. Prove that we can assume that Q ~ n ( 0 ) = 1 and that P ~ n ( u ) , Q ~ n ( u ) satisfy all conditions of Theorem 15.2.5.
(c)
Complete the inductive step of the proof when n is odd.

Answers

Proof. (a,c) We will prove the theorem by induction on n . The theorem holds for n = 1 , n = 2 with P 1 ( u ) = Q 1 ( u ) = 1 , and P 2 ( u ) = 2 , Q 2 ( u ) = 1 + u (misprint in Cox p. 477). Now assume that it holds for n 1 and n .

If n is even,

φ ( ( n 1 ) x ) = φ ( x ) P n 1 ( φ 4 ( x ) ) Q n 1 ( φ 4 ( x ) ) , φ ( nx ) = φ ( x ) P n ( φ 4 ( x ) ) Q n ( φ 4 ( x ) ) φ ( x ) .

Using (15.13), we obtain

φ ( ( n + 1 ) x ) = φ ( ( n 1 ) x ) ) + 2 φ ( nx ) φ ( x ) 1 + φ 2 ( nx ) φ 2 ( x ) = φ ( x ) P n 1 ( φ 4 ( x ) ) Q n 1 ( φ 4 ( x ) ) + 2 ( φ ( x ) P n ( φ 4 ( x ) ) Q n ( φ 4 ( x ) ) φ ( x ) ) φ ( x ) 1 + ( φ ( x ) P n ( φ 4 ( x ) ) Q n ( φ 4 ( x ) ) φ ( x ) ) 2 φ 2 ( x ) .

To simplify, we write a = φ ( x ) , p n = P n ( φ 4 ( x ) ) , q n = Q n ( φ 4 ( x ) ) .

Then, using φ ( x ) 2 = 1 φ 4 ( x ) ,

φ ( ( n + 1 ) x ) = a [ p n 1 q n 1 + 2 ( 1 a 4 ) p n q n 1 + a 4 ( 1 a 4 ) p n 2 q n 2 ] = a [ p n 1 q n 1 + 2 ( 1 a 4 ) p n q n q n 2 + a 4 ( 1 a 4 ) p n 2 ] = a p n 1 ( q n 2 + a 4 ( 1 a 4 ) p n 2 ) + 2 ( 1 a 4 ) p n q n q n 1 q n 1 ( q n 2 + a 4 ( 1 a 4 ) p n 2 ) ,

that is

φ ( ( n + 1 ) x ) = φ ( x ) P n + 1 ( φ 4 ( x ) ) Q n + 1 ( φ 4 ( x ) ) ,

where

P n + 1 ( u ) = P n 1 ( u ) ( Q n 2 ( u ) + u ( 1 u ) P n 2 ( u ) ) + 2 ( 1 u ) P n ( u ) Q n ( u ) Q n 1 ( u ) , Q n + 1 ( u ) = Q n 1 ( u ) ( Q n 2 ( u ) + u ( 1 u ) P n 2 ( u ) ) .

Verification : with n = 2 , we obtain P 3 ( u ) = 3 6 u u 2 , Q 3 ( u ) = 1 + 6 u 3 u 2 , which gives the tripling formula (15.17).

If n is odd,

φ ( ( n 1 ) x ) = φ ( x ) P n 1 ( φ 4 ( x ) ) Q n 1 ( φ 4 ( x ) ) φ ( x ) , φ ( nx ) = φ ( x ) P n ( φ 4 ( x ) ) Q n ( φ 4 ( x ) ) .

Then(15.13) gives

φ ( ( n + 1 ) x ) = φ ( ( n 1 ) x ) ) + 2 φ ( nx ) φ ( x ) 1 + φ 2 ( nx ) φ 2 ( x ) = φ ( x ) P n 1 ( φ 4 ( x ) ) Q n 1 ( φ 4 ( x ) ) φ ( x ) + 2 ( φ ( x ) P n ( φ 4 ( x ) ) Q n ( φ 4 ( x ) ) ) φ ( x ) 1 + ( φ ( x ) P n ( φ 4 ( x ) ) Q n ( φ 4 ( x ) ) ) 2 φ 2 ( x ) = φ ( x ) [ P n 1 ( φ 4 ( x ) ) Q n 1 ( φ 4 ( x ) ) + 2 ( P n ( φ 4 ( x ) ) Q n ( φ 4 ( x ) ) ) 1 + ( φ ( x ) P n ( φ 4 ( x ) ) Q n ( φ 4 ( x ) ) ) 2 φ 2 ( x ) ] φ ( x )

With the same notations as in the even case, and with a = φ ( x ) ,

φ ( ( n + 1 ) x ) = a [ p n 1 q n 1 + 2 p n q n 1 + a 4 p n 2 q n 2 ] a = a [ p n 1 q n 1 + 2 p n q n q n 2 + a 4 p n 2 ] a = a [ p n 1 ( q n 2 + a 4 p n 2 ) + 2 p n q n q n 1 q n 1 ( q n 2 + a 4 p n 2 ) ] a

that is

φ ( ( n + 1 ) x ) = φ ( x ) P n + 1 ( φ 4 ( x ) ) Q n + 1 ( φ 4 ( x ) ) φ ( x ) ,

where

P n + 1 ( u ) = P n 1 ( u ) ( Q n 2 ( u ) + u P n 2 ( u ) ) + 2 P n ( u ) Q n ( u ) Q n 1 ( u ) , Q n + 1 ( u ) = Q n 1 ( u ) ( Q n 2 ( u ) + u P n 2 ( u ) ) .

The induction is done, and the induction formulas concerning P n , Q n are

for  n  even , P n + 1 ( u ) = P n 1 ( u ) ( Q n 2 ( u ) + u ( 1 u ) P n 2 ( u ) ) + 2 ( 1 u ) P n ( u ) Q n ( u ) Q n 1 ( u ) , Q n + 1 ( u ) = Q n 1 ( u ) ( Q n 2 ( u ) + u ( 1 u ) P n 2 ( u ) ) , for  n  odd , P n + 1 ( u ) = P n 1 ( u ) ( Q n 2 ( u ) + u P n 2 ( u ) ) + 2 P n ( u ) Q n ( u ) Q n 1 ( u ) , Q n + 1 ( u ) = Q n 1 ( u ) ( Q n 2 ( u ) + u P n 2 ( u ) ) .

Note that we can take P 0 = 0 , Q 1 = 1 ( and P 1 = 1 , Q 1 = 1 ).

We give a Sage function to compute P n , Q n :

R.<u> = ZZ[]

def divisionPolynomial(n):
    P0, Q0 = 0, 1
    P1, Q1 = 1, 1
    for i in range(n):
        if i % 2 != 0:
            S = Q1^2 + u * (1-u) *P1^2
            P2 = -P0 * S + 2 * (1-u) * P1 * Q1 * Q0
            Q2 = Q0  * S
        else:
            S = Q1^2 + u * P1^2
            P2 = -P0 * S + 2 * P1 * Q1 * Q0
            Q2 = Q0  * S
        D = gcd(P2,Q2)
        (P2, Q2) = (P2/D, Q2/D)
        (P0, Q0) = (P1, Q1)
        (P1, Q1) = (P2, Q2)
    return (P0,Q0)

P5, Q5 = divisionPolynomial(5); P5,Q5

u 6 + 50 u 5 125 u 4 + 300 u 3 105 u 2 62 u + 5 , 5 u 6 62 u 5 105 u 4 + 300 u 3 125 u 2 + 50 u + 1

P5.factor(), Q5.factor()

( u 2 2 u + 5 ) ( u 4 + 52 u 3 26 u 2 12 u + 1 ) , ( 5 u 2 2 u + 1 ) ( u 4 12 u 3 26 u 2 + 52 u + 1 )

(b) Since is a UFD, the same is true for [ u ] by Theorem A.5.6. Thus we can write P n ( u ) = C n ( u ) P ~ n ( u ) , Q n ( u ) = C n ( u ) Q ~ n ( u ) , where C n ( u ) , P ~ n ( u ) , Q ~ n ( u ) [ u ] and P ~ n ( u ) , Q ~ n ( u ) are relatively prime.

Since Q n ( 0 ) = 1 , then C n ( 0 ) Q ~ n ( 0 ) = 1 , where C n ( 0 ) , Q ~ n ( 0 ) are integers, thus Q ~ n ( 0 ) = ± 1 .

If Q ~ n ( 0 ) = 1 , we are done, and if Q ~ n ( 0 ) = 1 We replace P ~ n , Q ~ n by P ~ n , Q ~ n , which satisfy all conditions of Theorem 15.2.5. □

User profile picture
2022-07-19 00:00
Comments