Exercise 15.3.2

This exercise is concerned with the proof of Proposition 15.3.1.

(a)
Prove that φ ( x + iy ) , as defined by (15.22), satisfies the Cauchy-Riemann equations.
(b)
Prove (15.23), (15.24), (15.25) and (15.26).

Answers

Proof. (a) By the definition of φ on Ω = { z z ( m + in ) ϖ 2 , m n 1 ( mod 2 ) } , for all z = x + iy Ω ,

φ ( x + iy ) = φ ( x ) φ ( y ) + ( y ) φ ( x ) 1 φ 2 ( x ) φ 2 ( y ) = u ( x , y ) + iv ( x , y ) ,

where

u ( x , y ) = φ ( x ) φ ( y ) 1 φ 2 ( x ) φ 2 ( y ) , v ( x , y ) = φ ( y ) φ ( x ) 1 φ 2 ( x ) φ 2 ( y ) ( = u ( y , x ) ) .

If we write d = 1 φ 2 ( x ) φ 2 ( y ) the denominator, then d 0 on Ω .

Using φ ( x ) = 2 φ 3 ( x ) (see Exercise 15.2.3), and φ 2 ( x ) = 1 φ 4 ( x ) , we obtain

d 2 ∂u ∂x ( x , y ) = φ ( x ) φ ( y ) ( 1 φ 2 ( x ) φ 2 ( y ) ) + 2 φ ( x ) φ ( y ) φ 2 ( x ) φ 2 ( y ) = φ ( x ) φ ( y ) ( 1 + φ 2 ( x ) φ 2 ( y ) ) , d 2 ∂u ∂y ( x , y ) = φ ( x ) φ ( y ) ( 1 φ 2 ( x ) φ 2 ( y ) ) + 2 φ 3 ( x ) φ ( y ) φ ( y ) 2 = 2 φ ( x ) φ 3 ( y ) ( 1 φ 2 ( x ) φ 2 ( y ) ) + 2 φ 3 ( x ) φ ( y ) ( 1 φ 4 ( y ) ) = 2 φ ( x ) φ 3 ( y ) + 2 φ 3 ( x ) φ 5 ( y ) + 2 φ 3 ( x ) φ ( y ) 2 φ 3 ( x ) φ 5 ( y ) = 2 φ ( x ) φ ( y ) ( φ 2 ( x ) φ 2 ( y ) ) ,

and, using v ( x , y ) = u ( y , x ) ,

d 2 ∂v ∂x ( x , y ) = 2 φ ( y ) φ ( x ) ( φ 2 ( y ) φ 2 ( x ) ) d 2 ∂v ∂y ( x , y ) = φ ( y ) φ ( x ) ( 1 + φ 2 ( y ) φ 2 ( x ) ) .

Therefore, using d 0 on Ω ,

∂u ∂x = ∂v ∂y , ∂u ∂y = ∂v ∂x ,

so that φ satisfies the Cauchy-Riemann equations on Ω . Thus φ is analytic on Ω . (b) For s [ 0 , ϖ 2 ] , and r [ 0 , 1 ] ,

r = φ ( s ) s = 0 r 1 1 t 4 d t .

Since 0 = 0 r 1 1 t 4 d t , φ ( 0 ) = 0 , and since ϖ 2 = 0 1 1 1 t 4 d t , φ ( ϖ 2 ) = 1 . Using ϕ ( x ) = 1 φ 4 ( x ) for 0 x ϖ 2 (see Section 15.2), we obtain φ ( 0 ) = 1 , φ ( ϖ 2 ) = 0 .

By (15.9), for all real s , φ ( ϖ s ) = φ ( s ) , which gives φ ( ϖ s ) = φ ( s ) , thus φ ( ϖ ) = 0 , and φ ( ϖ ) = φ ( 0 ) = 1 .

Moreover φ is odd, thus φ ( ϖ 2 ) = 1 , φ ( ϖ 2 ) = 0 . Since φ has period 2 ϖ , φ ( 3 ϖ 2 ) = 1 , φ ( 3 ϖ 2 ) = 0 .

We have proved (15.23):

x φ ( x ) φ ( x ) ϖ 2 1 0 ϖ 0 1 3 ϖ 2 1 0 0 0 1

By definition of φ on Ω , for all z = x + iy Ω ,

φ ( x + iy ) = φ ( x ) φ ( y ) + ( y ) φ ( x ) 1 φ 2 ( x ) φ 2 ( y ) .

Therefore, since φ is odd and φ is even,

φ ( iz ) = φ ( y + ix ) = φ ( y ) φ ( x ) + ( x ) φ ( y ) 1 φ 2 ( y ) φ 2 ( x ) = φ ( y ) φ ( x ) + ( x ) φ ( y ) 1 φ 2 ( x ) φ 2 ( y ) = i φ ( x ) φ ( y ) + ( y ) φ ( x ) 1 φ 2 ( x ) φ 2 ( y ) = ( z ) .

Using the Chain Rule (see Exercise 1), i φ ( iz ) = i φ ( z ) , thus φ ( iz ) = φ ( z ) , for all z Ω . This proves (15.24):

φ ( iz ) = ( z ) , φ ( iz ) = φ ( z ) ( z Ω ) .

Since φ and φ have period 2 ω on ,if k , φ ( 2 ) = φ ( 0 ) = 0 , and φ ( ( 2 k + 1 ) ϖ ) = φ ( ϖ ) = 0 . Similarly, φ ( 2 ) = φ ( 0 ) = 1 , φ ( ( 2 k + 1 ) ϖ ) = φ ( ϖ ) = 1 . Using (15.24), φ ( mϖi ) = ( ) , φ ( mϖi ) = φ ( m ϖ ) .This shows (15.25):

φ ( ) = φ ( mϖi ) = 0 , φ ( ) = φ ( mϖi ) = ( 1 ) m ( m ) .

Using the Addition Law, for all z Ω (then z + + nϖi Ω for m , n ),

φ ( z + ) = φ ( z ) φ ( ) + φ ( ) φ ( z ) 1 + φ 2 ( z ) φ 2 ( ) = ( 1 ) m φ ( z ) , φ ( z + nϖi ) = φ ( z ) φ ( nϖi ) + φ ( nϖi ) φ ( z ) 1 + φ 2 ( z ) φ 2 ( ) i = ( 1 ) n φ ( z ) ,

This proves (15.26), and

φ ( z + + nϖi ) = ( 1 ) m + n φ ( z ) ( z Ω ) .

User profile picture
2022-07-19 00:00
Comments