Exercise 15.3.3

Prove the formula for φ ( z ± ϖ 2 i ) stated in the proof of Theorem 15.3.2.

Answers

Proof. By (15.24) and (15.23),

φ ( ϖ 2 i ) = ( ϖ 2 ) = i , φ ( ϖ 2 i ) = φ ( ϖ 2 ) = 0 ,

and

φ ( ϖ 2 i ) = ( ϖ 2 ) = i , φ ( ϖ 2 i ) = φ ( ϖ 2 ) = 0 .

Using the addition law (Proposition 15.3.1(b)), we see that

φ ( z + ϖ 2 i ) = φ ( z ) φ ( ϖ 2 i ) + φ ( ϖ 2 i ) φ ( z ) 1 + φ 2 ( z ) φ 2 ( ϖ 2 i ) = i φ ( z ) 1 φ 2 ( z ) ,

and similarly,

φ ( z ϖ 2 i ) = φ ( z ) φ ( ϖ 2 i ) + φ ( ϖ 2 i ) φ ( z ) 1 + φ 2 ( z ) φ 2 ( ϖ 2 i ) = i φ ( z ) 1 φ 2 ( z ) .

We have proved

φ ( z ± ϖ 2 i ) = ± i φ ( z ) 1 φ 2 ( z ) .

User profile picture
2022-07-19 00:00
Comments