Exercise 15.4.10

Let w = z + ( 1 + i ) ϖ 2 . Use (15.48) and β i 𝜀 ( mod 2 ( 1 + i ) ) to show that

φ ( βz ) φ ( βw ) = i 3 + 2 𝜀 .

Answers

Proof. The identity (15.29) implies that

φ ( z ) φ ( z + ( 1 + i ) ϖ 2 ) = i = i 3 .

Setting w = z + ( 1 + i ) ϖ 2 , we obtain (15.48)

φ ( z ) φ ( w ) = i 3 .

Note that φ ( z ) = φ ( z ) , and φ ( iz ) = ( z ) , so that

φ ( i 𝜀 z ) = i 𝜀 φ ( z ) , 𝜀 { 1 , 2 , 3 , 4 } .

Since β i 𝜀 ( mod 2 ( 1 + i ) ) , we can write β = i 𝜀 + 2 ( 1 + i ) α , where α [ i ] . Then

φ ( βz ) φ ( βw ) = φ ( βz ) φ ( β ( z + ( 1 + i ) ϖ 2 ) ) = φ ( βz ) φ ( βz + ( i 𝜀 + 2 ( 1 + i ) α ) ( 1 + i ) ϖ 2 ) = φ ( βz ) φ ( βz + i 𝜀 ( 1 + i ) ϖ 2 + ( 1 + i ) 2 αϖ ) .

Since 1 + i is even, ( 1 + i ) 2 α is even, thus ( 1 + i ) 2 αϖ is a period of φ . Therefore

φ ( βz ) φ ( βw ) = φ ( βz ) φ ( βz + i 𝜀 ( 1 + i ) ϖ 2 ) = φ ( βz ) φ ( i 𝜀 ( i 𝜀 βz + ( 1 + i ) ϖ 2 ) ) = i 𝜀 φ ( i 𝜀 βz ) i 𝜀 φ ( i 𝜀 βz + ( 1 + i ) ϖ 2 ) = i 2 𝜀 φ ( Z ) φ ( Z + ( 1 + i ) ϖ 2 ) ,

where Z = i 𝜀 βz .

By (15.29), where we substitute Z = i 𝜀 βz to z ,

φ ( Z ) φ ( Z + ( 1 + i ) ϖ 2 ) = i 3 ,

therefore

φ ( βz ) φ ( βw ) = i 2 𝜀 i 3 = i 3 + 2 𝜀 .

User profile picture
2022-07-19 00:00
Comments