Exercise 15.4.5

Derive the two formulas for φ ( ( 2 + i ) z ) stated in Example 15.4.3.

Answers

Proof. Using the addition formula, together with (15.2) and the duplication formula (15.14), we obtain

φ ( ( 2 + i ) z ) = φ ( 2 z + iz ) = φ ( 2 z ) φ ( iz ) + φ ( 2 z ) φ ( iz ) 1 + φ 2 ( 2 z ) φ 2 ( iz ) = φ ( 2 z ) φ ( z ) + i φ ( 2 z ) φ ( z ) 1 φ 2 ( 2 z ) φ 2 ( z )

Starting from the duplication formula

φ ( 2 z ) = 2 φ ( z ) φ ( z ) 1 + φ 4 ( z ) ,

we obtain by differentiation,

2 φ ( 2 z ) = 2 ( φ 2 ( z ) + φ ( z ) φ ( z ) ) ( 1 + φ 4 ( z ) ) 4 φ 4 ( z ) φ 2 ( z ) ( 1 + φ 4 ( z ) ) 2

Then, using φ ( z ) 2 = 1 φ 4 ( z ) , φ ( z ) = 2 φ 3 ( z ) ,

φ ( 2 z ) = ( 1 3 φ 4 ( z ) ) ( 1 + φ 4 ( z ) ) 4 φ 4 ( z ) ( 1 φ 4 ( z ) ) ( 1 + φ 4 ( z ) ) 2 . = 1 6 φ 4 ( z ) + φ 8 ( z ) ( 1 + φ 4 ( z ) ) 2 .

Thus

φ ( ( 2 + i ) z ) = ( 2 φ ( z ) φ ( z ) 1 + φ 4 ( z ) ) φ ( z ) + i ( 1 6 φ 4 ( z ) + φ 8 ( z ) ( 1 + φ 4 ( z ) ) 2 ) φ ( z ) 1 ( 2 φ ( z ) φ ( z ) 1 + φ 4 ( z ) ) 2 φ 2 ( z ) = φ ( z ) 2 φ 2 ( z ) ( 1 + φ 4 ( z ) ) + i ( 1 6 φ 4 ( z ) + φ 8 ( z ) ) 1 + φ 4 ( z ) ) 2 4 φ 4 ( z ) φ 2 ( z ) = φ ( z ) 2 ( 1 φ 8 ( z ) ) + i ( 1 6 φ 4 ( z ) + φ 8 ( z ) ) 1 + 2 φ 4 ( z ) + φ 8 ( z ) 4 φ 4 ( z ) ( 1 φ 4 ( z ) ) = φ ( z ) ( 2 + i ) φ 8 ( z ) 6 i φ 4 ( z ) + 2 + i 5 φ 8 ( z ) 2 φ 4 ( z ) + 1 .

We factor these expressions, writing u = φ ( x ) :

5 ( 5 u 8 2 u 4 + 1 ) = 25 u 8 10 u 4 + 5 = ( 5 u 4 1 ) 2 + 4 = ( 5 u 4 1 2 i ) ( 5 u 4 1 + 2 i )

Since 5 = ( 1 + 2 i ) ( 1 2 i ) ,

5 u 8 2 u 4 + 1 = ( 5 1 + 2 i u 4 1 ) ( 5 1 2 i u 4 1 ) = ( ( 1 2 i ) u 4 1 ) ( ( 1 + 2 i ) u 4 1 ) .

The discriminant Δ of f ( x ) = ( 2 + i ) x 2 6 ix + 2 + i is given by Δ 4 = ( 3 i ) 2 ( 2 + i ) ( 2 + i ) = 9 + 5 = 4 = ( 2 i ) 2 . Thus the roots of f are

x 1 = 3 i + 2 i 2 + i = 5 i 2 + i = ( 2 i ) i = 1 2 i , x 2 = 3 i 2 i 2 + i = i 2 + i = i ( 2 + i ) ( 2 + i ) ( 2 i ) = 1 2 i 5 .

Therefore f ( x ) = ( 2 + i ) ( x 1 + 2 i ) ( x + 2 i 5 5 ) , thus the substitution x u 4 gives

( 2 + i ) u 8 6 i u 4 + 2 + i = ( 2 + i ) ( u 4 1 + 2 i ) ( u 4 + 2 i 5 5 ) = ( u 4 1 + 2 i ) ( ( 2 + i ) u 4 + ( 2 + i ) ( 2 i 1 ) 5 ) = ( u 4 1 + 2 i ) ( ( 2 + i ) u 4 i ) = i ( u 4 1 + 2 i ) ( ( 1 2 i ) u 4 + 1 ) .

Therefore φ ( ( 2 + i ) z ) = h ( φ ( z ) ) , where

h ( u ) = u ( 2 + i ) u 8 6 i u 4 + 2 + i 5 u 8 2 u 4 + 1 = iu ( u 4 1 + 2 i ) ( ( 1 2 i ) u 4 + 1 ) ( ( 1 2 i ) u 4 1 ) ( ( 1 + 2 i ) u 4 1 ) = iu u 4 1 + 2 i ( 1 + 2 i ) u 4 + 1 .

This gives (15.39):

φ ( ( 2 + i ) z ) = ( z ) φ 4 ( z ) + ( 1 + 2 i ) ( 1 + 2 i ) φ 4 ( z ) + 1 .

User profile picture
2022-07-19 00:00
Comments