Exercise 15.4.6

Prove the third and fourth lines of (15.42):

φ ( ( β + 1 ) z ) = φ ( ( β 1 ) z ) + 2 φ ( βz ) φ ( z ) 1 + φ 2 ( βz ) φ 2 ( z ) , φ ( ( β + i ) z ) = φ ( ( β i ) z ) + 2 φ ( βz ) φ ( z ) 1 φ 2 ( βz ) φ 2 ( z ) .

Answers

Proof. By (15.13),

φ ( x + y ) + φ ( x y ) = 2 φ ( x ) φ ( y ) 1 + φ 2 ( x ) φ 2 ( y ) ,

and, by the Principle of Analytic Continuation, this remains true for all x , y such that both members are defined.

If we use the substitution ( x , y ) ( βz , z ) , we obtain

φ ( ( β + 1 ) z ) + φ ( ( β 1 ) z ) = 2 φ ( βz ) φ ( z ) 1 + φ 2 ( βz ) φ 2 ( z ) ,

and the substitution ( x , y ) ( βz , iz ) gives, using φ ( iz ) = ( z ) , φ ( iz ) = φ ( z ) ,

φ ( ( β + i ) z ) + φ ( ( β i ) z ) = 2 φ ( βz ) φ ( iz ) 1 + φ 2 ( βz ) φ 2 ( iz ) = 2 φ ( βz ) φ ( z ) 1 φ 2 ( βz ) φ 2 ( z ) .
User profile picture
2022-07-19 00:00
Comments