Exercise 15.4.7

Supply the details omitted in the proof of Step 1 of Theorem 15.4.4.

Answers

Proof. We want to prove that, given β [ i ] , there are polynomials P β ( u ) , Q β ( u ) [ i ] [ u ] such that Q β ( 0 ) = 1 and

( 15 . 40 ) φ ( βz ) = φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) , when  β  is odd ,

and

( 15 . 41 ) φ ( βz ) = φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) φ ( z ) , when  β  is even .

To prove this theorem by induction for all Gaussian integers β = n + mi , n 0 , m 0 , it is sufficient to verify that it is true for 0 , 1 , i , i + 1 , and assuming that it is true for β 1 , β , prove that it is true for β + 1 , and also assuming that it is is true for β i , β , prove that is is true for β + i .

If β = 0 , φ ( 0 z ) = 0 , thus P 0 ( u ) = 0 , Q 0 ( u ) = 1 satisfy the Theorem.

If β = 1 , φ ( 1 z ) = φ ( z ) , thus P 1 ( u ) = 1 , Q 1 ( u ) = 1 are suitable.

If β = i , β is odd, and

φ ( iz ) = ( z ) = φ ( z ) P i ( φ 4 ( z ) ) Q i ( φ 4 ( z ) ) ,

where P i ( u ) = i , Q i ( u ) = 1 .

If β = 1 + i , β is even, and by (15.36) (see Exercise 1),

φ ( ( 1 + i ) z ) = ( 1 + i ) φ ( z ) φ ( z ) 1 φ 4 ( z ) = φ ( z ) P 1 + i ( φ 4 ( z ) ) Q 1 + i ( φ 4 ( z ) ) φ ( z ) ,

where P 1 + i ( u ) = 1 + i , Q 1 + i ( u ) = 1 u .

In these four cases, Q β ( 0 ) = 1 .

Now suppose that the property holds for β 1 and β , β [ i ] . The third line of (15.42) (see Exercise 6) gives,

φ ( ( β + 1 ) z ) = φ ( ( β 1 ) z ) + 2 φ ( βz ) φ ( z ) 1 + φ 2 ( βz ) φ 2 ( z ) .

If β is odd, then β 1 is even, thus

φ ( βz ) = φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) , φ ( ( β 1 ) z ) = φ ( z ) P β 1 ( φ 4 ( z ) ) Q β 1 ( φ 4 ( z ) ) φ ( z ) ,

so that, with the same computing as in the odd case of Exercise 15.2.7(a),

φ ( ( β + 1 ) z ) = φ ( z ) P β 1 ( φ 4 ( z ) ) Q β 1 ( φ 4 ( z ) ) φ ( z ) + 2 φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) φ ( z ) 1 + ( φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) ) 2 φ 2 ( z ) = φ ( z ) [ P β 1 ( φ 4 ( z ) ) Q β 1 ( φ 4 ( z ) ) + 2 ( P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) ) 1 + ( φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) ) 2 φ 2 ( z ) ] φ ( z )

Writing a = φ ( z ) , p β = P β ( φ 4 ( z ) ) , q β = Q β ( φ 4 ( z ) ) and a = φ ( z ) , this gives

φ ( ( β + 1 ) z ) = a [ p β 1 q β 1 + 2 p β q β 1 + a 4 p β 2 q β 2 ] a = a [ p β 1 q β 1 + 2 p β q β q β 2 + a 4 p β 2 ] a = a [ p β 1 ( q β 2 + a 4 p β 2 ) + 2 p β q β q β 1 q β 1 ( q β 2 + a 4 p β 2 ) ] a

that is

φ ( ( β + 1 ) z ) = φ ( z ) P β + 1 ( φ 4 ( x ) ) Q β + 1 ( φ 4 ( z ) ) φ ( z ) ,

where

P β + 1 ( u ) = P β 1 ( u ) ( Q β 2 ( u ) + u P β 2 ( u ) ) + 2 P β ( u ) Q β ( u ) Q β 1 ( u ) , Q β + 1 ( u ) = Q β 1 ( u ) ( Q β 2 ( u ) + u P β 2 ( u ) ) .

Moreover Q β + 1 ( 0 ) = Q β 1 ( 0 ) ( Q β 2 ( 0 ) + 0 × P β 2 ( 0 ) ) = 1 .

If β is even, β 1 is odd, thus

φ ( ( β 1 ) z ) = φ ( z ) P β 1 ( φ 4 ( z ) ) Q β 1 ( φ 4 ( z ) ) , φ ( βz ) = φ ( z ) P β ( z ) ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) φ ( z ) .

so that, with the same computing as in the even case of Exercise 15.2.7 (a),

φ ( ( β + 1 ) z ) = φ ( ( β 1 ) z ) + 2 φ ( βz ) φ ( z ) 1 + φ 2 ( βz ) φ 2 ( z ) = φ ( z ) P β 1 ( φ 4 ( z ) ) Q β 1 ( φ 4 ( z ) ) + 2 ( φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) φ ( z ) ) φ ( x ) 1 + ( φ ( x ) P n + i ( φ 4 ( x ) ) Q n + i ( φ 4 ( x ) ) φ ( x ) ) 2 φ 2 ( x ) .

With the same notations as in first case, using φ ( x ) 2 = 1 φ 4 ( x ) ,

φ ( ( β + 1 ) z ) = a [ p β 1 q β 1 + 2 ( 1 β 4 ) p β q β 1 + a 4 ( 1 a 4 ) p β 2 q β 2 ] = a [ p β 1 q β 1 + 2 ( 1 a 4 ) p β q β q β 2 + a 4 ( 1 a 4 ) p β 2 ] = a p β 1 ( q β 2 + a 4 ( 1 a 4 ) p β 2 ) + 2 ( 1 a 4 ) p β q β q β 1 q β 1 ( q β 2 + a 4 ( 1 a 4 ) p β 2 ) ,

that is

φ ( ( β + 1 ) z ) = φ ( z ) P n + 1 ( φ 4 ( z ) ) Q n + 1 ( φ 4 ( z ) ) ,

where

P β + 1 ( u ) = P β 1 ( u ) ( Q n 2 ( u ) + u ( 1 u ) P β 2 ( u ) ) + 2 ( 1 u ) P β ( u ) Q β ( u ) Q β 1 ( u ) , Q β + 1 ( u ) = Q β 1 ( u ) ( Q β 2 ( u ) + u ( 1 u ) P β 2 ( u ) ) .

This gives also Q n + 1 + i ( 0 ) = 1 .

Now consider φ ( ( β + i ) z ) , where β [ i ] .

If β is even, β i is odd, thus

φ ( ( β i ) z ) = φ ( z ) P β i ( φ 4 ( z ) ) Q β i ( φ 4 ( z ) ) , φ ( βz ) = φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) φ ( z ) .

Then, using the fourth line of (15.42),

φ ( ( β + i ) z ) = φ ( ( β i ) z ) + 2 ( βz ) φ ( z ) 1 φ 2 ( βz ) φ 2 ( z ) = φ ( z ) P β i ( φ 4 ( z ) ) Q β i ( φ 4 ( z ) ) + 2 i ( φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) φ ( z ) ) φ ( z ) 1 ( φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) φ ( z ) ) 2 φ 2 ( z )

As usual, writing a = φ ( z ) , a = φ ( z ) , p β = P β ( φ 4 ( z ) ) , q β = Q ( φ 4 ( z ) ) , and using φ 2 ( z ) = 1 φ 4 ( z ) , we obtain

φ ( ( β + i ) z ) = a [ p β 1 q β 1 + 2 i ( 1 a 4 ) p β q β 1 a 4 ( 1 a 4 ) p β 2 q β 2 ] = a [ p β 1 q β 1 + 2 i ( 1 a 4 ) p β q β q β 2 a 4 ( 1 a 4 ) p β 2 ] = a p β 1 ( q β 2 a 4 ( 1 a 4 ) p β 2 ) + 2 i ( 1 a 4 ) p β q β q β 1 q β 1 ( q β 2 a 4 ( 1 a 4 ) p β 2 ) ,

so that

φ ( ( β + i ) z ) = φ ( z ) P β + i ( φ 4 ( z ) ) Q β + i ( φ 4 ( z ) ) ,

where

P β + i ( u ) = P β i ( u ) ( Q β 2 ( u ) u ( 1 u ) P β 2 ( u ) ) + 2 i ( 1 u ) P β ( u ) Q β ( u ) Q β i ( u ) , Q β + i ( u ) = Q β i ( u ) ( Q β 2 ( u ) u ( 1 u ) P β 2 ( u ) ) .

This implies Q β + i ( 0 ) = 1 .

If β is odd, β i is even, thus

φ ( ( β i ) z ) = φ ( z ) P β i ( φ 4 ( z ) ) Q β i ( φ 4 ( z ) ) φ ( z ) , φ ( βz ) = φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) .

Then

φ ( ( β + i ) z ) = φ ( ( β i ) z ) + 2 ( βz ) φ ( z ) 1 φ 2 ( β ) z ) φ 2 ( z ) = φ ( z ) P β i ( φ 4 ( z ) ) Q β i ( φ 4 ( z ) ) φ ( z ) + 2 ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) φ ( z ) 1 ( φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) ) 2 φ 2 ( z ) = φ ( z ) [ P β i ( φ 4 ( z ) ) Q β i ( φ 4 ( z ) ) + 2 i P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) 1 ( φ ( z ) P β ( φ 4 ( z ) ) Q β ( φ 4 ( z ) ) ) 2 φ 2 ( z ) ] φ ( z ) .

With the same notations,

φ ( ( β + i ) z ) = a ( p β i q β i + 2 i p β q β 1 a 4 p β 2 q β 2 ) a = a ( p β i q β i + 2 i p β q β q β 2 a 4 p β 2 ) a = a ( p β i ( q β 2 a 4 p β 2 ) + 2 i p β q β q β i q β i ( q β 2 a 4 p β 2 ) ) a ,

so that

φ ( ( β + i ) z ) = φ ( z ) P β + i ( φ 4 ( z ) ) Q β + i ( φ 4 ( z ) ) φ ( z ) ,

where

P β + i ( u ) = P β i ( u ) ( Q β 2 ( u ) u P β 2 ( u ) ) + 2 i P β ( u ) Q β ( u ) Q β i ( u ) , Q β + i ( u ) = Q β i 2 ( u ) u P β 2 ( u ) .

We obtain Q β + i ( 0 ) = 1 . The induction is done. □

To resume the computing of P β ( u ) , Q β ( u ) with β = n + mi [ i ] , n 0 , m 0 , we have

P 0 ( u ) = 0 , Q 0 ( u ) = 1 , P 1 ( u ) = 1 , Q 1 ( u ) = 1 , P i ( u ) = i , Q i ( u ) = 1 , P 1 + i ( u ) = 1 + i , Q 1 + i ( u ) = 1 u .

If β odd,

P β + 1 ( u ) = P β 1 ( u ) ( Q β 2 ( u ) + u P β 2 ( u ) ) + 2 P β ( u ) Q β ( u ) Q β 1 ( u ) , Q β + 1 ( u ) = Q β 1 ( u ) ( Q β 2 ( u ) + u P β 2 ( u ) ) , P β + i ( u ) = P β i ( u ) ( Q β 2 ( u ) u P β 2 ( u ) ) + 2 i P β ( u ) Q β ( u ) Q β i ( u ) , Q β + i ( u ) = Q β i 2 ( u ) u P β 2 ( u ) .

If β even,

P β + 1 ( u ) = P β 1 ( u ) ( Q n 2 ( u ) + u ( 1 u ) P β 2 ( u ) ) + 2 ( 1 u ) P β ( u ) Q β ( u ) Q β 1 ( u ) , Q β + 1 ( u ) = Q β 1 ( u ) ( Q β 2 ( u ) + u ( 1 u ) P β 2 ( u ) ) , P β + i ( u ) = P β i ( u ) ( Q β 2 ( u ) u ( 1 u ) P β 2 ( u ) ) + 2 i ( 1 u ) P β ( u ) Q β ( u ) Q β i ( u ) , Q β + i ( u ) = Q β i ( u ) ( Q β 2 ( u ) u ( 1 u ) P β 2 ( u ) ) .

By (15.43), if n , m 0 ,

φ ( ( m + in ) z ) = φ ( i ( n + im ) z ) = ( ( n + im ) z ) , φ ( ( n im ) z ) = φ ( ( n + im ) z ) = φ ( ( n + im ) z ) , φ ( ( m in ) z ) = φ ( i ( n + im ) z ) = ( ( n + im ) z ) .

This gives, for β = a + bi [ i ] odd, where a < 0 , b 0 ( a = m , b = n , m 0 , n 0 ),

φ ( βz ) = φ ( ( a + bi ) z ) = ( ( b ai ) z ) = ( z ) P b ai ( φ 4 ( z ) ) Q b ai ( φ 4 ( z ) = φ ( z ) P β ( φ 4 ( z ) Q β ( φ 4 ( z ) ) ,

where

P β ( u ) = i P ( u ) , Q β ( u ) = Q ( u ) ( Re ( β ) 0 , Im ( β ) 0 ) .

(same formulas if β is even.)

Similarly,

P β ( u ) = P β ( u ) , Q β ( u ) = Q β ( u ) ( Re ( β ) 0 , Im ( β ) 0 ) ,

and

P β ( u ) = i P ( u ) , Q β ( u ) = Q ( u ) ( Re ( β ) 0 , Im ( β ) 0 ) .

This gives an algorithm to compute P β , Q β for all β [ i ] .

User profile picture
2022-07-19 00:00
Comments