Exercise 15.5.10

Let n be odd and positive, and let L = ( i , φ ( ϖ n ) ) . Use (15.9) and the multiplication law for φ ( ( n 1 ) z ) to prove that φ ( ϖ n ) L .

Answers

Proof. By Theorem 15.2.5, since n 1 is even, for all x ,

φ ( ( n 1 ) x ) = φ ( x ) P n 1 ( φ 4 ( x ) ) Q n 1 ( φ 4 ( x ) ) φ ( x ) ,

Moreover, by (15.9),

φ ( ( n 1 ) ϖ n ) = φ ( ϖ ϖ n ) = φ ( ϖ n ) .

Applying these two formula with x = ϖ n , we obtain

φ ( ϖ n ) = φ ( ( n 1 ) ϖ n ) = φ ( ϖ n ) P n 1 ( φ 4 ( ϖ n ) ) Q n 1 ( φ 4 ( ϖ n ) ) φ ( ϖ n ) .

If n = 1 , then φ ( ϖ n ) = 0 , but in this case φ ( ϖ ) = 1 L .

If n > 1 , then φ ( ϖ n ) 0 , thus the last equality shows that P n 1 ( φ 4 ( ϖ n ) ) 0 . We obtain

φ ( ϖ n ) = Q n 1 ( φ 4 ( ϖ n ) ) P n 1 ( φ 4 ( ϖ n ) ) .

This equality shows that

φ ( ϖ n ) ( φ ( ϖ n ) ) ( i , φ ( ϖ n ) ) .

For all n , n > 0 ,

φ ( ϖ n ) ( i , φ ( ϖ n ) ) .

User profile picture
2022-07-19 00:00
Comments