Exercise 15.5.2

As in the proof of Theorem 15.5.1, let u 0 = φ ( ϖ n ) , and assume that σ Gal ( L [ i ] ) satisfies σ ( u 0 ) = φ ( α ϖ n ) , where α [ i ] is odd. Use the multiplication formula for β [ i ] odd to prove (15.65):

σ ( φ ( β ϖ n ) ) = φ ( αβ ϖ n ) .

Answers

Proof. σ fixes the elements of [ i ] , thus σ ( i 𝜀 ) = i 𝜀 , and since P β ( u ) , Q β ( u ) [ i ] [ u ] , for all ζ L ,

σ ( P β ( ζ ) Q β ( ζ ) ) = P β ( σ ( ζ ) ) Q β ( σ ( ζ ) ) .

Starting from the multiplication formula for β [ i ] odd, we obtain

φ ( β ϖ n ) = i 𝜀 φ ( ϖ n ) P β ( φ 4 ( ϖ n ) ) ) Q β ( φ 4 ( ϖ n ) ) ) .

Since σ ( φ ( ϖ n ) ) = φ ( α ϖ n ) , using the multiplication formula for β anew,

σ ( φ ( β ϖ n ) ) = σ ( i 𝜀 ) σ ( φ ( ϖ n ) ) σ ( P β ( φ 4 ( ϖ n ) ) ) Q β ( φ 4 ( ϖ n ) ) ) ) = i 𝜀 φ ( α ϖ n ) P β ( φ 4 ( α ϖ n ) ) ) Q β ( φ 4 ( α ϖ n ) ) ) = φ ( β ( α ϖ n ) )

We have proved

σ ( φ ( β ϖ n ) ) = φ ( αβ ϖ n ) .

User profile picture
2022-07-19 00:00
Comments