Exercise 15.5.6

Let α , β [ i ] be relatively prime. Prove the Chiese Remainder Theorem for [ i ] , which asserts that there is a ring isomorphism

[ i ] αβℤ [ i ] [ i ] αℤ [ i ] × [ i ] βℤ [ i ] .

Answers

Proof. Consider the map

ψ { [ i ] [ i ] αℤ [ i ] × [ i ] βℤ [ i ] γ ( γ + αℤ [ i ] , γ + βℤ [ i ] ) .

Then φ is a ring homomorphism:

ψ ( γ ) ψ ( δ ) = ( γ + αℤ [ i ] , γ + βℤ [ i ] ) ( δ + αℤ [ i ] , δ + βℤ [ i ] ) = ( ( γ + αℤ [ i ] ) ( δ + αℤ [ i ] ) , ( γ + βℤ [ i ] ) ( δ + βℤ [ i ] ) ) = ( γδ + αℤ [ i ] , γδ + βℤ [ i ] ) , = ψ ( γδ )

and similarly ψ ( γ ) + ψ ( δ ) = ψ ( γ + δ ) .

Moreover, since α , β are relatively prime, for all γ [ i ] ,

γ ker ( ψ ) γ αℤ [ i ]  and  γ βℤ [ i ] α γ  and  β γ αβ γ γ αβℤ [ i ] .

Thus

ker ( ψ ) = αβℤ [ i ] .

Therefore there is an injective ring homomorphism

ψ ¯ : [ i ] αβℤ [ i ] [ i ] αℤ [ i ] × [ i ] βℤ [ i ]

such that ψ ¯ ( γ + αβℤ [ i ] ) = ψ ( γ ) .

Since

| [ i ] αβℤ [ i ] | = N ( αβ ) = N ( α ) N ( β ) = | [ i ] αℤ [ i ] × [ i ] βℤ [ i ] | ,

ψ ¯ is surjective, so ψ ¯ is a ring isomorphism.

[ i ] αβℤ [ i ] [ i ] αℤ [ i ] × [ i ] βℤ [ i ] .

User profile picture
2022-07-19 00:00
Comments