Exercise 2.2.17

Use the Newton identities (2.22) to express the power sum s 2 , s 3 , s 4 in terms of the elementary symmetric polynomials σ 1 , σ 2 , σ 3 , σ 4 .

Answers

Proof. s r = x 1 r + x 2 r + + x n r .

We suppose here that the number n of variables is at least 4. Then

s r = σ 1 s r 1 σ 2 s r 2 + + ( 1 ) r σ r 1 s 1 + ( 1 ) r 1 r σ r .

s 1 = σ 1 , s 2 = σ 1 s 1 2 σ 2 = σ 1 2 2 σ 2 , s 3 = σ 1 s 2 σ 2 s 1 + 3 σ 3 = σ 1 ( σ 1 2 2 σ 2 ) σ 2 σ 1 + 3 σ 3 = σ 1 3 3 σ 1 σ 2 + 3 σ 3 , s 4 = σ 1 s 3 σ 2 s 2 + σ 3 s 1 4 σ 4 = σ 1 ( σ 1 3 3 σ 1 σ 2 + 3 σ 3 ) σ 2 ( σ 1 2 2 σ 2 ) + σ 3 σ 1 4 σ 4 = σ 1 4 4 σ 1 2 σ 2 + 4 σ 1 σ 3 + 2 σ 2 2 4 σ 4 .

Verification with Sage:

e = SymmetricFunctions(QQ).e()
e1, e2, e3, e4 = e([1]).expand(4),e([2]).expand(4),e([3]).expand(4),e([4]).expand(4)
R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’lex’)
J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4)
G = J.groebner_basis()
s2 = x0^2 + x1^2 + x2^2 + x3^2
s3 = x0^3 + x1^3 + x2^3 + x3^3
s4 = x0^4 + x1^4 + x2^4 + x3^4
g2, g3, g4 = s2.reduce(G),s3.reduce(G),s4.reduce(G)
var(’sigma_1,sigma_2,sigma_3,sigma_4’)
h2 = g2.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
h3 = g3.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
h4 = g4.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)

h2, h3, h4

( σ 1 2 2 σ 2 , σ 1 3 3 σ 1 σ 2 + 3 σ 3 , σ 1 4 4 σ 1 2 σ 2 + 2 σ 2 2 + 4 σ 1 σ 3 4 σ 4 ) .

User profile picture
2022-07-19 00:00
Comments