Homepage › Solution manuals › David A. Cox › Galois Theory › Exercise 2.2.17
Exercise 2.2.17
Use the Newton identities (2.22) to express the power sum in terms of the elementary symmetric polynomials .
Answers
Proof. .
We suppose here that the number of variables is at least 4. Then
Verification with Sage:
e = SymmetricFunctions(QQ).e() e1, e2, e3, e4 = e([1]).expand(4),e([2]).expand(4),e([3]).expand(4),e([4]).expand(4) R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’lex’) J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4) G = J.groebner_basis() s2 = x0^2 + x1^2 + x2^2 + x3^2 s3 = x0^3 + x1^3 + x2^3 + x3^3 s4 = x0^4 + x1^4 + x2^4 + x3^4 g2, g3, g4 = s2.reduce(G),s3.reduce(G),s4.reduce(G) var(’sigma_1,sigma_2,sigma_3,sigma_4’) h2 = g2.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4) h3 = g3.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4) h4 = g4.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
h2, h3, h4
□
2022-07-19 00:00