Exercise 2.2.3

Prove (2.13)-(2.16). For (2.13), a computer will be helpful; the others can be proved by hand using the identity

( y 1 + + y m ) 2 = y 1 2 + + y m 2 + 2 i < j y i y j .

Answers

Proof.

Let

f = Σ 4 x 1 3 x 2 2 x 3 .

We must write f as a polynomial in σ 1 , σ 2 , σ 3 , σ 4 .

The leading term of f for the graded lexicographical order being x 1 3 x 2 2 x 3 1 x 4 0 , the algorithm of section 2.2 asks to subtract to f the monomial σ 1 3 2 σ 2 2 1 σ 3 1 0 σ 4 0 = σ 1 σ 2 σ 3 .

(a)
σ 1 σ 2 σ 3 = ( x 1 + x 2 + x 3 + x 4 ) × ( x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 ) × ( x 1 x 2 x 3 + x 1 x 2 x 4 + x 1 x 3 x 4 + x 2 x 3 x 4 ) = 3 x 1 x 2 3 x 3 x 4 + 8 x 1 2 x 2 2 x 3 x 4 + 8 x 2 2 x 4 2 x 1 x 3 + 8 x 2 2 x 3 2 x 1 x 4 + 8 x 1 2 x 2 x 4 2 x 3 + 8 x 1 2 x 2 x 3 2 x 4 + 8 x 2 x 3 2 x 4 2 x 1 + 3 x 1 3 x 2 x 3 x 4 + 3 x 2 x 4 3 x 1 x 3 + 3 x 2 x 3 3 x 1 x 4 + x 1 3 x 4 2 x 3 + 3 x 2 2 x 3 2 x 4 2 + x 1 2 x 2 3 x 3 + x 3 2 x 4 3 x 2 + x 2 2 x 3 3 x 1 + 3 x 1 2 x 2 2 x 3 2 + x 1 2 x 3 3 x 4 + x 3 3 x 4 2 x 2 + x 2 3 x 3 2 x 4 + x 2 2 x 3 3 x 4 + x 3 2 x 4 3 x 1 + x 2 3 x 3 2 x 1 + x 2 3 x 4 2 x 1 + x 2 2 x 4 3 x 1 + x 2 3 x 4 2 x 3 + x 3 3 x 4 2 x 1 + x 1 3 x 2 2 x 3 + x 1 3 x 3 2 x 2 + x 1 2 x 4 3 x 2 + 3 x 1 2 x 2 2 x 4 2 + x 1 3 x 3 2 x 4 + x 1 3 x 2 2 x 4 + 3 x 1 2 x 3 2 x 4 2 + x 2 2 x 4 3 x 3 + x 1 3 x 4 2 x 2 + x 1 2 x 2 3 x 4 + x 1 2 x 4 3 x 3 + x 1 2 x 3 3 x 2 = 8 Σ 4 x 1 2 x 2 2 x 3 x 4 + 3 Σ 4 x 1 3 x 2 x 3 x 4 + 3 Σ 4 x 1 2 x 2 2 x 3 2 + Σ 4 x 1 3 x 2 2 x 3 .

We find the 96 terms of the product σ 1 σ 2 σ 3 (see Ex. 2.2.12):

Σ 4 x 1 2 x 2 2 x 3 x 4 has 4 ! 2 ! 2 ! = 6 terms, with the coefficient 8 : 48 terms.

Σ 4 x 1 3 x 2 x 3 x 4 has 4 ! 1 ! 3 ! = 4 terms, with the coefficient 3 : 12 terms.

Σ 4 x 1 2 x 2 2 x 3 2 has 4 ! 3 ! 1 ! = 4 terms, with the coefficient 3 : 12 terms.

Σ 4 x 1 3 x 2 2 x 3 has 4 ! 1 ! 1 ! 1 ! 1 ! = 24 terms, with the coefficient 1 : 24 terms..

We obtain this product with the following Maple instructions :

> P = ( x + x 1 ) . ( x + x 2 ) . ( x + x 3 ) ( x + x 4 ) ;

> p : = expand ( P ) ;

> q : = collect ( p , x ) ;

> σ 1 : = coeff ( q , x , 3 ) ; σ 2 : = coeff ( q , x , 2 ) ; σ 3 : = coeff ( q , x , 1 ) ; σ 4 : = coeff ( q , x , 1 ) ;

> expand ( σ 1 . σ 2 . σ 3 ) ;

With sage :

     e = SymmetricFunctions(QQ).e()
     g = (e([1])* e([2])*e([3])).expand(4);g

(b)
So f 1 = f σ 1 σ 2 σ 3 = 8 Σ 4 x 1 2 x 2 2 x 3 x 4 3 Σ 4 x 1 3 x 2 x 3 x 4 3 Σ 4 x 1 2 x 2 2 x 3 2 .

The leading of f 1 is 3 x 1 3 x 2 x 3 x 4 , so we must subtract 3 σ 1 2 σ 4 to f 1 .

σ 1 2 σ 4 = ( Σ 4 x 1 ) 2 ( x 1 x 2 x 3 x 4 ) = ( Σ 4 x 1 2 + 2 Σ 4 x 1 x 2 ) x 1 x 2 x 3 x 4 = Σ 4 x 1 3 x 2 x 3 x 4 + 2 Σ 4 x 1 2 x 2 2 x 3 x 4 , therefore f 2 = f σ 1 σ 2 σ 3 + 3 σ 1 2 σ 4 = 3 Σ 4 x 1 2 x 2 2 x 3 2 2 Σ 4 x 1 2 x 2 2 x 3 x 4 .

(c)
The leading term of f 2 is 3 x 1 2 x 2 2 x 3 2 , so must subtract 3 σ 3 2 to f 2 . σ 3 2 = ( Σ 4 x 1 x 2 x 3 ) 2 = Σ 4 x 1 2 x 2 2 x 3 2 + 2 Σ 4 x 1 2 x 2 2 x 3 x 4 ,

f 3 = f σ 1 σ 2 σ 3 + 3 σ 1 2 σ 4 + 3 σ 3 2 = 4 Σ 4 x 1 2 x 2 2 x 3 x 4 .

(d)
The leading term of f 3 is 4 x 1 2 x 2 2 x 3 x 4 , so we must subtract 4 σ 2 σ 4 to f 3 . σ 2 σ 4 = ( Σ 4 x 1 x 2 ) ( x 1 x 2 x 3 x 4 ) = Σ 4 x 1 2 x 2 2 x 3 x 4 ,

so f 4 = f σ 1 σ 2 σ 3 + 3 σ 1 2 σ 4 + 3 σ 3 2 4 σ 2 σ 4 = 0 .

f = Σ 4 x 1 3 x 2 2 x 3 = σ 1 σ 2 σ 3 3 σ 1 2 σ 4 3 σ 3 2 + 4 σ 2 σ 4 .

User profile picture
2022-07-19 00:00
Comments