Exercise 2.2.4

Let f = x 3 + b x 2 + cx + d F [ x ] have roots α 1 , α 2 , α 3 in the field L containing F , and let g be the polynomial defined in (2.17). Show carefully that

g ( x ) = x 3 + 2 b x 2 + ( b 2 + c ) x + bc d .

Answers

Proof. Let

f = x 3 + b x 2 + cx + d = ( x α ) ( x β ) ( x γ ) = x 3 σ 1 ( α , β , γ ) x 2 + σ 2 ( α , β , γ ) x σ 3 ( α , β , γ ) ,

which gives

σ 1 ( α , β , γ ) = b , σ 2 ( α , β , γ ) = + c , σ 3 ( α , β , γ ) = d .

Let

G ( x ) = ( x ( x 1 + x 2 ) ) ( x ( x 1 + x 3 ) ) ( x ( x 2 + x 3 ) ) .

Then

g ( x ) = ( x ( α 1 + α 2 ) ) ( x ( α 1 + α 3 ) ) ( x ( α 2 + α 3 ) )

is obtained from G by the evaluation morphism which sends x 1 , x 2 , x 3 on α 1 , α 2 , α 3 .

Let p = ( x + x 1 ) ( x + x 2 ) ( x + x 3 ) = x + σ 1 x 2 + σ 2 x + σ 3 .

Then

G = ( x σ 1 + x 3 ) ( x σ 1 + x 2 ) ( x σ 1 + x 1 ) = p ( x σ 1 ) = ( x σ 1 ) 3 + σ 1 ( x σ 1 ) 2 + σ 2 ( x σ 1 ) + σ 3 = ( x 3 3 σ 1 x 2 + 3 σ 1 2 x σ 1 3 ) + ( σ 1 x 2 2 σ 1 2 x + σ 1 3 ) + ( σ 2 x σ 1 σ 2 ) + σ 3 = x 3 2 σ 1 x 2 + ( σ 1 2 + σ 2 ) x + ( σ 3 σ 1 σ 2 ) .

The previous evaluation morphism sends σ 1 on σ 1 ( α 1 , α 2 , α 3 ) = b , σ 2 on σ 2 ( α 1 , α 2 , α 3 ) = c , σ 3 on σ 3 ( α 1 , α 2 , α 3 ) = d .

g ( x ) = x 3 + 2 b x 2 + ( b 2 + c ) x + bc d .

In the example 2.2.6,

f ( x ) = x 3 + 2 x 2 + x + 7 ,

where

b = 2 , c = 1 , d = 7 ,

α 1 , α 2 , α 3 being the roots of g in , we obtain

g ( x ) = ( x ( α 1 + α 2 ) ) ( x ( α 1 + α 3 ) ) ( x ( α 2 + x α 3 ) ) = x 3 + 2 b x 2 + ( b 2 + c ) x + bc d = x 3 + 4 x 2 + 5 x 5 .
User profile picture
2022-07-19 00:00
Comments