Exercise 2.3.2

Use the method of Example 2.3.1 or 2.3.2 to find the cubic polynomial whose roots are the fourth powers of the roots of the polynomial y 3 + 2 y 2 3 y + 5 .

Answers

Proof. Same method in Sage as in Ex.2.3.1

e = SymmetricFunctions(QQ).e()
e1, e2, e3 = e([1]).expand(3),e([2]).expand(3),e([3]).expand(3)
R.<x0,x1,x2,y1,y2,y3> = PolynomialRing(QQ, order = ’degrevlex’)
J = R.ideal(e1-y1, e2-y2, e3-y3)
G = J.groebner_basis()
f = (x-x0^4) * (x-x1^4) * (x-x2^4)
coeffs = f.coefficients(x, sparse = False)
coeffs = map(lambda c : R(c), coeffs)
coeffs

[ x 0 4 x 1 4 x 2 4 , x 0 4 x 1 4 + x 0 4 x 2 4 + x 1 4 x 2 4 , x 0 4 x 1 4 x 2 4 , 1 ]

var(’sigma_1,sigma_2,sigma_3,y’)
ncoeffs = [c.reduce(G) for c in coeffs]
nncoeffs = [c.subs(y1 = sigma_1,y2 = sigma_2,y3 = sigma_3) for c in ncoeffs]
nncoeffs

[ x 0 4 x 1 4 x 2 4 , x 0 4 x 1 4 + x 0 4 x 2 4 + x 1 4 x 2 4 , x 0 4 x 1 4 x 2 4 , 1 ]

nnncoeffs = [c.subs(sigma_1 = -2, sigma_2 = -3, sigma_3 = -5) for c in nncoeffs]
p = sum(nnncoeffs[i]*y^i for i in range(1+f.degree(x)))
p

y 3 122 y 2 379 y 625 .

So the cubic polynomial whose roots are the fourth powers of the roots of the polynomial y 3 + 2 y 2 3 y + 5 is

y 3 122 y 2 379 y 625 .

User profile picture
2022-07-19 00:00
Comments