Homepage › Solution manuals › David A. Cox › Galois Theory › Exercise 2.3.3
Exercise 2.3.3
Express in terms of elementary symmetric polynomials.
Answers
Proof. Explicitly,
Note that is the leading term for the graded lexicographic order, so the following term in the sequence is .
thusVerification with Sage:
R.<x1,x2,x3,y1,y2,y3> = PolynomialRing(QQ, order = ’degrevlex’) elt = SymmetricFunctions(QQ).e() e = [elt([i]).expand(3).subs(x0=x1, x1=x2, x2=x3) for i in range(5)] J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3) G = J.groebner_basis() D = x1^3*x2^2; u = D + D.subs(x1=x2, x2=x1) + D.subs(x1=x3, x2=x2) + \ D.subs(x1=x2, x2=x3) + D.subs(x1=x3, x2=x1)+D.subs(x1=x1, x2=x3) var(’sigma_1, sigma_2, sigma_3’) u.reduce(G).subs(y1 = sigma_1, y2 = sigma_2,y3 = sigma_3)
□
2022-07-19 00:00