Exercise 2.3.3

Express Σ 3 x 1 3 x 2 2 in terms of elementary symmetric polynomials.

Answers

Proof. Explicitly,

f = Σ 3 x 1 3 x 2 2 = x 1 2 x 2 3 + x 1 2 x 3 3 + x 1 3 x 2 2 + x 1 3 x 3 2 + x 2 2 x 3 3 + x 2 3 x 3 2 .

Note that x 1 3 x 2 2 = x 1 3 x 2 2 x 3 0 is the leading term for the graded lexicographic order, so the following term in the sequence is g = f σ 1 3 2 σ 2 2 0 σ 3 0 = f σ 1 σ 2 2 .

σ 1 σ 2 2 = ( x 1 + x 2 + x 3 ) ( x 1 x 2 + x 1 x 3 + x 2 x 3 ) 2 = ( x 1 + x 2 + x 3 ) ( x 1 2 x 2 2 + x 1 2 x 3 2 + x 2 2 x 3 2 + 2 x 1 x 2 x 3 ( x 1 + x 2 + x 3 ) ) = x 1 2 x 2 3 + x 1 2 x 3 3 + x 1 3 x 2 2 + x 1 3 x 3 2 + x 2 2 x 3 3 + x 2 3 x 3 2 + x 1 x 2 x 3 ( x 1 x 2 + x 1 x 3 + x 2 x 3 ) + 2 σ 3 σ 1 2 = f + σ 3 σ 2 + 2 σ 3 σ 1 2 , thus f = σ 1 σ 2 2 σ 3 σ 2 2 σ 3 σ 1 2 .

Verification with Sage:

    R.<x1,x2,x3,y1,y2,y3> = PolynomialRing(QQ, order = ’degrevlex’)
    elt = SymmetricFunctions(QQ).e()
    e = [elt([i]).expand(3).subs(x0=x1, x1=x2, x2=x3) for i in range(5)]
    J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3)
    G = J.groebner_basis()
    D = x1^3*x2^2;
    u = D + D.subs(x1=x2, x2=x1) + D.subs(x1=x3, x2=x2) + \
    
D.subs(x1=x2, x2=x3) + D.subs(x1=x3, x2=x1)+D.subs(x1=x1, x2=x3)
    var(’sigma_1, sigma_2, sigma_3’)
    u.reduce(G).subs(y1 = sigma_1, y2 = sigma_2,y3 = sigma_3)

σ 1 σ 2 2 2 σ 1 2 σ 3 σ 2 σ 3

User profile picture
2022-07-19 00:00
Comments