Exercise 2.3.5

Given a quartic x 4 + b x 3 + c x 2 + dx + e , what condition must b , c , d , e satisfy in order that one root be the negative of another ?

Answers

Proof. The polynomial

f = x 4 + b x 3 + c x 2 + dx + e = ( x α 1 ) ( x α 2 ) ( x α 3 ) ( x α 4 )

has two opposite roots iff

( α 1 + α 2 ) ( α 1 + α 3 ) ( α 1 + α 4 ) ( α 2 + α 3 ) ( α 2 + α 4 ) ( α 3 + α 4 ) = 0

Let

u = ( x 1 + x 2 ) ( x 1 + x 3 ) ( x 1 + x 4 ) ( x 2 + x 3 ) ( x 2 + x 4 ) ( x 3 + x 4 ) .

u is symmetric, so is a polynomial in σ 1 , σ 2 , σ 3 , σ 4 .

We obtain this polynomial with the following Sage instructions

e = SymmetricFunctions(QQ).e()
e1,e2,e3,e4 = e([1]).expand(4),e([2]).expand(4),e([3]).expand(4),e([4]).expand(4)
R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’lex’)
J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4)
G = J.groebner_basis()
u = (x0+x1)*(x0+x2)*(x0+x3)*(x1+x2)*(x1+x3)*(x2+x3)
var(’sigma_1,sigma_2,sigma_3,sigma_4’)
u.reduce(G).subs(y1=sigma_1, y2 = sigma_2,y3=sigma_3,y4=sigma_4)

σ 1 σ 2 σ 3 σ 1 2 σ 4 σ 3 2 .

So

u = σ 1 σ 2 σ 3 σ 1 2 σ 4 σ 3 2 .

The evaluation ring homomorphism defined by x i α i , i = 1 , 2 , 3 , 4 verifies

σ 1 b , σ 2 c , σ 3 d , σ 4 e .

So ( α 1 + α 2 ) ( α 1 + α 3 ) ( α 1 + α 4 ) ( α 2 + α 3 ) ( α 2 + α 4 ) ( α 3 + α 4 ) = bcd b 2 e d 2 .

Conclusion : f = x 4 + b x 3 + c x 2 + dx + e is such that one root is the negative of another iff bcd b 2 e d 2 = 0 . □

User profile picture
2022-07-19 00:00
Comments