Homepage › Solution manuals › David A. Cox › Galois Theory › Exercise 2.3.5
Exercise 2.3.5
Given a quartic , what condition must satisfy in order that one root be the negative of another ?
Answers
Proof. The polynomial
has two opposite roots iff
Let
is symmetric, so is a polynomial in .
We obtain this polynomial with the following Sage instructions
e = SymmetricFunctions(QQ).e() e1,e2,e3,e4 = e([1]).expand(4),e([2]).expand(4),e([3]).expand(4),e([4]).expand(4) R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’lex’) J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4) G = J.groebner_basis() u = (x0+x1)*(x0+x2)*(x0+x3)*(x1+x2)*(x1+x3)*(x2+x3) var(’sigma_1,sigma_2,sigma_3,sigma_4’) u.reduce(G).subs(y1=sigma_1, y2 = sigma_2,y3=sigma_3,y4=sigma_4)
So
The evaluation ring homomorphism defined by verifies
So .
Conclusion : is such that one root is the negative of another iff . □