Exercise 2.4.9

For n = 4 , the variables x 1 , x 2 , x 3 , x 4 have discriminant

Δ = ( x 1 x 2 ) 2 ( x 1 x 3 ) 2 ( x 1 x 4 ) 2 ( x 2 x 3 ) 2 ( x 2 x 4 ) 2 ( x 3 x 4 ) 2 .

Let y 1 = x 1 x 2 + x 3 x 4 , y 2 = x 1 x 3 + x 2 x 4 , y 3 = x 1 x 4 + x 2 x 3 , and consider

𝜃 ( y ) = ( y y 1 ) ( y y 2 ) ( y y 3 ) .

This is a cubic polynomial in y . As in the text, the discriminant of 𝜃 will be denoted Δ ( 𝜃 ) . Show that Δ ( 𝜃 ) = Δ .

Answers

Proof.

y 1 y 2 = x 1 x 2 + x 3 x 4 x 1 x 3 x 2 x 4 = x 1 ( x 2 x 3 ) x 4 ( x 2 x 3 ) = ( x 1 x 4 ) ( x 2 x 3 ) y 1 y 3 = x 1 x 2 + x 3 x 4 x 1 x 4 x 2 x 3 = x 1 ( x 2 x 4 ) x 3 ( x 2 x 4 ) = ( x 1 x 3 ) ( x 2 x 4 ) y 2 y 3 = x 1 x 3 + x 2 x 4 x 1 x 4 x 2 x 3 = x 1 ( x 3 x 4 ) x 2 ( x 3 x 4 ) = ( x 1 x 2 ) ( x 3 x 4 ) ,

Therefore

Δ ( 𝜃 ) = ( y 1 y 2 ) 2 ( y 1 y 3 ) 2 ( y 2 y 3 ) 2 = [ ( x 1 x 4 ) ( x 2 x 3 ) ( x 1 x 3 ) ( x 2 x 4 ) ( x 1 x 2 ) ( x 3 x 4 ) ] 2 = Δ .
User profile picture
2022-07-19 00:00
Comments