Exercise 4.1.4

Complete the proof of Corollary 4.1.11 by showing that

F ( α 1 , , α r ) ( α r + 1 , , α n ) F ( α 1 , , α n ) .

Answers

Proof. F ( α 1 , , α r ) F ( α 1 , , α n ) , 1 r n , since F ( α 1 , , α n ) contains F and α 1 , , α r , and since F ( α 1 , , α r ) is the smallest subfield of L containing F and α 1 , , α r .

Moreover F ( α 1 , , α n ) contains α r + 1 , , α n .

By Lemma 4.1.9, F ( α 1 , , α r ) ( α r + 1 , , α n ) is the smallest subfield of L containing F ( α 1 , , α r ) and α r + 1 , , α n , thus

F ( α 1 , , α r ) ( α r + 1 , , α n ) F ( α 1 , , α n ) .

From the reciprocal inclusion proved in section 4.1, we conclude that

F ( α 1 , , α r ) ( α r + 1 , , α n ) = F ( α 1 , , α n ) .

User profile picture
2022-07-19 00:00
Comments