Exercise 4.1.5

Prove carefully that F [ α 1 , , α n 1 ] [ α n ] = F [ α 1 , , α n ] .

Answers

Proof. Let γ F [ α 1 , , α n 1 ] [ α n ] . Write R = F [ α 1 , , α n 1 ] . By definition, there exists a polynomial p = k = 0 d a k x n k R [ x n ] such that γ = p ( α n ) , and for every a k R , 0 k d , there exists f k F [ x 1 , , x n 1 ] such that a k = f k ( α 1 , , α n 1 ) .

Thus

γ = k = 0 d f k ( α 1 , , α n 1 ) α n k .

Let f = k = 0 d f k ( x 1 , , x n 1 ) x n k . Then f F [ x 1 , , x n ] , and γ = f ( α 1 , , α n ) , so γ F [ α 1 , , α n ] . We have proved

F [ α 1 , , α n 1 ] [ α n ] F [ α 1 , , α n ] .

Conversely, let γ F [ α 1 , , α n ] .

There exists f F [ x 1 , , x n ] such that x = f ( α 1 , , α n ) .

As F [ x 1 , , x n ] = F [ x 1 , , x n 1 ] [ x n ] , f = k = 0 d f k ( x 1 , , x n 1 ) x n k , where f k F [ x 1 , , x n 1 ] .

So γ = k = 0 d f k ( α 1 , , α n 1 ) α n k = k = 0 d a k x n k , with a k = f k ( α 1 , , α n 1 ) F [ α 1 , , α n 1 ] = R .

Let p = k = 0 d a k x n k . Then p R [ x n ] and x = p ( α n ) , thus x R [ α n ] = F [ α 1 , , α n 1 ] [ α n ] .

The reciprocal inclusion

F [ α 1 , , α n ] F [ α 1 , , α n 1 ] [ α n ]

is proved, and so

F [ α 1 , , α n ] = F [ α 1 , , α n 1 ] [ α n ] .

Note: in an alternative way, we could write a lemma analogous to Lemma 4.1.9 and show that F [ α 1 , , α n ] is the smallest subring of L containing α 1 , , α n (where L is a ring containing F and α 1 , , α n ), and prove as in Exercise 4 that

F [ α 1 , , α r ] [ α r + 1 , , α n ] = F [ α 1 , , α n ] .

User profile picture
2022-07-19 00:00
Comments