Exercise 4.2.4

For each of the following polynomials, use a computer to determine whether it is irreducible over the given field.

(a)
x 4 + x 3 + x 2 + x + 2 over .
(b)
3 x 6 + 6 x 5 + 9 x 4 + 2 x 3 + 3 x 2 + 1 over and ( 2 3 ) .

Answers

Proof.

(a)
With Sage, the instructions
     factor(x^4+x^3+x^2+x+2)
     factor(3*x^6+6*x^5+9*x^4+2*x^3+3*x^2+1);

give the same polynomials.

So x 4 + x 3 + x 2 + x + 2 and 3 x 6 + 6 x 5 + 9 x 4 + 2 x 3 + 3 x 2 + 1 are irreducible over .

(b)
The instructions
     K = NumberField(x^3-2, ’a’); L.<X> = PolynomialRing(K)
     p =  3*x^6 + 6*x^5 + 9*x^4 + 2*x^3 + 3*x^2 + 1
     u = factor(p)

give the following decomposition, where a = 2 3 :

3 x 6 + 6 x 5 + 9 x 4 + 2 x 3 + 3 x 2 + 1 =

1 3 ( 3 x 2 + ( a 2 + a + 2 ) x + a 2 a + 1 ) ×

( 3 x 4 + ( a 2 a + 4 ) x 3 + ( a + 4 ) x 2 + ( a 2 a ) x + a + 1 ) .

Thus 3 x 6 + 6 x 5 + 9 x 4 + 2 x 3 + 3 x 2 + 1 is not irreducible over ( 2 3 ) .

User profile picture
2022-07-19 00:00
Comments