Exercise 4.4.2

Let α be a solution of (4.14). We will show that the minimal polynomial of α over has degree at most 1760 . Let L = ( 2 , 5 , 12 4 , i , 17 5 , α ) .

(a)
Show that [ L : ] 1760 .
(b)
Use Lemme 4.4.2 to show that the minimal polynomial polynomial of α has degree at most 1760 .

Answers

Proof.

(a)
Let α be a root of f = x 11 ( 2 + 5 ) x 5 + 3 12 4 x 3 + ( 1 + 3 i ) x + 17 5 .

Let L = ( 2 , 5 , 12 4 , i , 17 5 , α ) , and K = ( 2 , 5 , 12 4 , i , 17 5 ) .

f K [ x ] , and α is a root of f . The minimal polynomial p of α over K divides f , thus [ L : K ] = [ K ( α ) : K ] = deg ( p ) deg ( f ) = 11 :

[ L : K ] 11 .

Moreover, if we write

K 4 = ( 2 , 5 , 12 4 , i ) , K 3 = ( 2 , 5 , 12 4 ) , K 2 = ( 2 , 5 ) , K 1 = ( 2 ) ,

then

[ K : ] = [ K : K 4 ] . [ K 4 : K 3 ] . [ K 3 : K 2 ] . [ K 2 : K 1 ] . [ K 1 : ] = [ K 4 ( 17 5 ) : K 4 ] . [ K 3 ( i ) : K 3 ] . [ K 2 ( 12 4 ) : K 2 ] . [ K 1 ( 5 ) : K 1 ] . [ ( 2 ) : ]

The minimal polynomial P of 17 5 over K 4 divides x 5 17 [ x ] K 4 [ x ] , thus [ K 4 ( 17 5 ) : K 4 ] = deg ( P ) 5 . With similar arguments,

[ K 3 ( i ) : K 3 ] 2 , [ K 2 ( 12 4 ) : K 2 ] 4 , [ K 1 ( 5 ) : K 1 ] 2 , [ ( 2 ) : ] 2 ,

Consequently

[ K : ] 5 × 2 × 4 × 2 × 2 = 160

and

[ L : ] = [ L : K ] [ K : ] 11 × 160 = 1760 .

(b)

By Lemma 4.4.2(b), as α L , the degree of the minimal polynomial of α over divides [ L : ] 1760 , hence deg ( p ) 1760 .

User profile picture
2022-07-19 00:00
Comments