Exercise 5.3.15

Let f be the polynomial considered in Example 5.3.9. Use Maple or Mathematica to factor f and to verify that the product of the distinct irreducible factors of f is the polynomial given in (5.10).

Answers

Proof. Sage instructions:

f = x^11-x^10+2*x^8-4*x^7+3*x^5-3*x^4+x^3+3*x^2-x-1; f

x 11 x 10 + 2 x 8 4 x 7 + 3 x 5 3 x 4 + x 3 + 3 x 2 x 1

f1 = f.derivative(); f1

11 x 10 10 x 9 + 16 x 7 28 x 6 + 15 x 4 12 x 3 + 3 x 2 + 6 x 1

d = gcd(f,f1); d

x 6 x 5 + x 3 2 x 2 + 1

p = (f/d).simplify_rational(); p

x 5 + x 2 x 1

v = p.factor(); v

( x 3 + x + 1 ) ( x + 1 ) ( x 1 )

w = d.factor(); w

( x 3 + x + 1 ) ( x + 1 ) ( x 1 ) 2

s = f.factor(); s

( x 3 + x + 1 ) 2 ( x + 1 ) 2 ( x 1 ) 3

s.expand()

x 11 x 10 + 2 x 8 4 x 7 + 3 x 5 3 x 4 + x 3 + 3 x 2 x 1

User profile picture
2022-07-19 00:00
Comments