Exercise 5.3.1

Prove (5.6) :

( ag + bh ) = a g + b h ( gh ) = g h + g h

where f , g F [ x ] , a , b F .

Answers

Proof. Write

g = i = 0 n a i x i , h = j = 0 m b j x j F [ x ] . (1)

(We suppose a i = 0 if i > m or i < 0 , b j = 0 if j > m or j < 0 .)

(a)
Write N = max ( n , m ) : then g = i = 0 N a i x i , h = i = 0 N b i x i .

g = i = 1 N i a i x i 1 , h = i = 1 N i b i x i 1 .

If a , b F , then

a g + b h = i = 1 N i ( a a i + b b i ) x i 1 .

Moreover

ag + bh = i = 0 N ( a a i + b b i ) x i , ( ag + bh ) = i = 1 N i ( a a i + b b i ) x i 1 ,

thus

( ag + bh ) = a g + b h .
(b)
By (1), the definition of the product of two polynomials gives gh = k = 0 m + n ( i = 0 k a i b k i ) x k .

Thus

( gh ) = k = 1 m + n k ( i = 0 k a i b k i ) x k 1 = k = 0 m + n 1 ( k + 1 ) ( i = 0 k + 1 a i b k + 1 i ) x k .

As

g = i = 1 n i a i x i 1 = i = 0 n 1 ( i + 1 ) a i + 1 x i , h = j = 1 m j b j x j 1 = j = 0 m 1 ( j + 1 ) b j + 1 x j ,

we obtain

g h = k = 0 m + n 1 ( i = 0 k ( i + 1 ) a i + 1 b k i ) x k = k = 0 m + n 1 ( i = 1 k + 1 i a i b k + 1 i ) x k = k = 0 m + n 1 ( i = 0 k + 1 i a i b k + 1 i ) x k ,

and also

g h = k = 0 m + n 1 ( i = 0 k ( k + 1 i ) a i b k + 1 i ) x k = k = 0 m + n 1 ( i = 0 k + 1 ( k + 1 i ) a i b k + 1 i ) x k .

Thus

g h + g h = k = 0 m + n 1 ( i = 0 k + 1 i a i b k + 1 i + i = 0 k + 1 ( k + 1 i ) a i b k + 1 i ) x k = k = 0 m + n 1 ( i = 0 k ( i + k + 1 i ) a i b k + 1 i ) x k = k = 0 m + n 1 ( k + 1 ) ( i = 0 k + 1 a i b k + 1 i ) x k = ( gh ) .

We have proved the equations 5.6 :

( ag + bh ) = a g + b h , ( gh ) = g h + g h .
User profile picture
2022-07-19 00:00
Comments