Homepage › Solution manuals › David A. Cox › Galois Theory › Exercise 5.3.5
Exercise 5.3.5
For , find all primes for which is not separable, and compute as in (5.14).
Answers
Proof. The following Sage instructions give the wanted factorisation of the discriminant of :
P.<x> = PolynomialRing(QQ) f = x^7+x+1 g = diff(f(x),x) d = f.resultant(g);d
870199
f.discriminant()
-870199
d.factor()
P.<x> = PolynomialRing(GF(11)) f = x^7 + x + 1; df = diff(f(x),x) gcd(f,df)
factor(f)
P.<x> = PolynomialRing(GF(239)) f = x^7 + x + 1; df = diff(f(x),x) gcd(f,df)
factor(f)
P.<x> = PolynomialRing(GF(331)) f = x^7 + x + 1; df = diff(f(x),x) gcd(f,df)
factor(f)
So
□
2022-07-19 00:00