Exercise 5.3.5

For f = x 7 + x + 1 , find all primes for which f p is not separable, and compute gcd ( f p , f p ) as in (5.14).

Answers

Proof. The following Sage instructions give the wanted factorisation of the discriminant of f :

 P.<x> = PolynomialRing(QQ)
 f = x^7+x+1
 g = diff(f(x),x)
 d = f.resultant(g);d

870199

f.discriminant()

-870199

 d.factor()

11 239 331

P.<x> = PolynomialRing(GF(11))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)

x + 3

factor(f)

( x + 3 ) 2 ( x 5 + 5 x 4 + 5 x 3 + 2 x 2 + 9 x + 5 )

P.<x> = PolynomialRing(GF(239))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)

x + 41

factor(f)

( x + 41 ) 2 ( x 5 + 157 x 4 + 24 x 3 + 122 x 2 + 81 x + 30 )

P.<x> = PolynomialRing(GF(331))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)

x + 277

factor(f)

( x + 277 ) 2 ( x 2 + 188 x + 203 ) ( x 3 + 251 x 2 + 84 x + 80 ) .

So

gcd ( f p , f p ) = { x + 3 , p = 11 , x + 41 , p = 239 , x + 277 , p = 331 , 1 otherwise .

User profile picture
2022-07-19 00:00
Comments