Exercise 6.2.1

Complete Example 6.2.2 by showing that Gal ( L ) = { 1 L , σ , τ , στ } and that Gal ( L ) 2 × 2 .

Answers

Proof. We proved in Exercise 6.1.2 that

G : = Gal ( ( 2 , 3 ) ) = { 1 L , σ , τ , στ } .

Every group of order 4 is abelian, and isomorphic to 4 or 2 × 2 .

We note that G has at least 2 elements of order 2, since σ 2 = τ 2 = 1 L . This is not the case in 4 . Thus

Gal ( ( 2 , 3 ) ) 2 × 2 .

User profile picture
2022-07-19 00:00
Comments