Exercise 7.4.5

Label the elements of S 3 as g 1 = e , g 2 = ( 1 2 3 ) , g 3 = ( 1 3 2 ) , g 4 = ( 1 2 ) , g 5 = ( 1 3 ) , and g 6 = ( 2 3 ) . Write down the six permutations σ i S 6 defined by the rows of the Cayley table (7.18).

Answers

Proof. The numbering of S 3 is given by

g 1 = e , g 2 = ( 123 ) , g 3 = ( 132 ) , g 4 = ( 12 ) , g 5 = ( 13 ) , g 6 = ( 23 ) .

Write σ i the permutation defined by g i g j = g σ i ( j ) , 1 i , j n . The Cayley table of the group gives

[ g 1 g 2 g 3 g 4 g 5 g 6 g 2 g 3 g 1 g 5 g 6 g 4 g 3 g 1 g 2 g 6 g 4 g 5 g 4 g 6 g 5 g 1 g 3 g 2 g 5 g 4 g 6 g 2 g 1 g 3 g 6 g 5 g 4 g 3 g 2 g 1 ]

where the element of the i th row, j th column is g i g j = g i g j = g σ i ( j ) .

Thus

σ 1 = ( ) , σ 2 = ( 123 ) ( 456 ) , σ 3 = ( 132 ) ( 465 ) = σ 2 2 , σ 4 = ( 14 ) ( 26 ) ( 35 ) , σ 5 = ( 15 ) ( 24 ) ( 36 ) , σ 6 = ( 16 ) ( 25 ) ( 34 ) .
User profile picture
2022-07-19 00:00
Comments