Exercise 7.5.9

In Example 7.5.10, we consider rotations r 1 , r 2 , r 3 of the octahedron and defined matrices γ 1 , γ 2 , γ 3 GL ( 2 , ) . We also proved carefully that r 1 corresponds to [ γ 1 ] under the homomorphism of Theorem 7.5.9. In a similar way, prove that r 2 corresponds to [ γ 2 ] and r 3 corresponds to [ γ 3 ] .

Answers

Proof. The text proves that the isomorphism r [ γ ] sends r 1 = Rot ( π , e 1 ) on γ 1 , where

[ γ 1 ] z = 1 z .

Let γ 2 = ( i 0 0 1 ) GL ( 2 , F ) . The homography [ γ 2 ] satisfies [ γ 2 ] z = iz for all z , and [ γ 2 ] = . So

[ γ 2 ] = , [ γ 2 ] i = 1 , [ γ 2 ] 1 = i .

The rotation r 2 = Rot ( π 2 , e 3 ) satisfies

r 2 ( π ^ 1 ( ) ) = r 2 ( N ) = N = π ^ 1 ( ) , r 2 ( π ^ 1 ( i ) ) = r 2 ( 0 , 1 , 0 ) = ( 1 , 0 , 0 ) = π ^ 1 ( 1 ) , r 2 ( π 1 ( 1 ) ) = r 2 ( 1 , 0 , 0 ) = ( 0 , 1 , 0 ) = π ^ 1 ( i ) .

Thus

[ π ^ r 2 π ^ 1 ] = , [ π ^ r 2 π ^ 1 ] i = 1 , [ π ^ r 2 π ^ 1 ] 1 = i .

By the uniqueness proved in Exercise 8, [ π ^ r 2 π ^ 1 ] = [ γ 2 ] .

In other words, the isomorphism r [ γ ] sends r 2 = Rot ( π 2 , e 3 ) on γ 2 , where

[ γ 2 ] z = iz .

Let γ 3 = ( 1 1 1 1 ) GL ( 2 , F ) .

The homography [ γ 3 ] satisfies [ γ 3 ] z = z 1 z + 1 for all z , and [ γ 3 ] = 1 . So

[ γ 3 ] i = i , [ γ 3 ] ( i ) = i , [ γ 3 ] = 1 .

The rotation r 3 = Rot ( π 2 , e 2 ) satisfies

r 3 ( π ^ 1 ( i ) ) = r 3 ( 0 , 1 , 0 ) = ( 0 , 1 , 0 ) = π ^ 1 ( i ) , r 3 ( π 1 ( i ) ) = r 3 ( 0 , 1 , 0 ) = ( 0 , 1 , 0 ) = π ^ 1 ( i ) r 3 ( π ^ 1 ( ) ) = r 3 ( 0 , 0 , 1 ) = ( 1 , 0 , 0 ) = π ^ 1 ( 1 ) ,

thus

[ π ^ r 3 π ^ 1 ] i = i , [ π ^ r 2 3 π ^ 1 ] ( i ) = i , [ π ^ r 3 π ^ 1 ] = 1

By the same uniqueness property, [ π ^ r 3 π ^ 1 ] = [ γ 3 ] .

In other words, the isomorphism r [ γ ] sends r 3 = Rot ( π 2 , e 3 ) on γ 3 , where

[ γ 3 ] z = z 1 z + 1 .

User profile picture
2022-07-19 00:00
Comments