Exercise 8.3.8

This exercise concerns the details of our derivation of Cardan’s formulas.

(a)
Use the computational methods of Section 2.3 the formulas for α 1 3 and β 1 stated in the text.
(b)
Prove (8.15).

Answers

Proof.

(a)
We know that α 1 = x 1 + ω 2 x 2 + ω x 3 , so α 1 3 = ( x 1 + ω 2 x 2 + ω x 3 ) 3 = x 1 3 + x 2 3 + x 3 3 + 3 ω ( x 1 2 x 3 + x 2 2 x 1 + x 3 2 x 2 ) + 3 ω 2 ( x 1 2 x 2 + x 2 2 x 3 + x 3 2 x 1 ) + 6 x 1 x 2 x 3 .

Thus α 1 3 is of the form

α 1 3 = p + 3 ωr + 3 ω 2 s + 6 q ,

where

p = x 1 3 + x 2 3 + x 3 3 = σ 1 3 3 σ 1 σ 2 + 3 σ 3 , q = x 1 x 2 x 3 = σ 3 , r = x 1 2 x 3 + x 2 2 x 1 + x 3 2 x 2 , s = x 1 2 x 2 + x 2 2 x 3 + x 3 2 x 1 .

Since r , s are fixed by the permutations of A 3 , they must be of the form A + B Δ , A , B K = ( σ 1 , σ 2 , σ 3 ) , where we choose

Δ = ( x 2 x 1 ) ( x 3 x 2 ) ( x 3 x 1 ) = ( x 1 2 x 3 + x 2 2 x 1 + x 3 2 x 2 ) ( x 1 2 x 3 + x 2 2 x 1 + x 3 2 x 2 ) = r s .

The pair ( r , s ) is thus the solution of the system

r s = Δ , r + s = σ 1 σ 2 3 σ 3 .

Therefore

r = 1 2 ( σ 1 σ 2 3 σ 3 + Δ ) , s = 1 2 ( σ 1 σ 2 3 σ 3 Δ ) .

Then

α 1 3 = ( x 1 + ω 2 x 2 + ω x 3 ) 3 = + σ 1 3 3 σ 1 σ 2 + 3 σ 3 + 3 2 ω ( σ 1 σ 2 3 σ 3 + Δ ) + 3 2 ω 2 ( σ 1 σ 2 3 σ 3 Δ ) + 6 σ 3 = σ 1 3 3 σ 1 σ 2 + 9 σ 3 3 2 ( σ 1 σ 2 3 σ 3 ) + 3 2 ( ω ω 2 ) Δ = σ 1 3 9 2 σ 1 σ 2 + 27 2 σ 3 + 3 3 2 i Δ

Therefore

α 1 3 = 27 2 q + 3 3 2 i Δ = 27 2 ( q + Δ 27 )

where

q = 2 27 σ 1 3 + 1 3 σ 1 σ 2 σ 3 .

So

α 1 = x 1 + ω 2 x 2 + ω x 3 = 3 1 2 ( q + Δ 27 ) 3 ,

and

β 1 = ( 23 ) α 1 = x 1 + ω 2 x 3 + ω x 2 = 3 1 2 ( q Δ 27 ) 3 .

Indeed the same calculation gives β 1 , by the exchange of x 2 with x 3 , which sends Δ on Δ .

(b)
The system of equations σ 1 = x 1 + x 2 + x 3 α 1 = x 1 + ω 2 x 2 + ω x 1 β 1 = x 1 + ω x 2 + ω 2 x 3 ,

has for solution

x 1 = 1 3 ( σ 1 + α 1 + β 1 ) x 2 = 1 3 ( σ 1 + ω α 1 + ω 2 β 1 ) x 3 = 1 3 ( σ 1 + ω 2 α 1 + ω β 1 )

And these are the Cardan’s formula for the roots of f ~ = x 3 σ 1 x 2 + σ 2 x σ 3 .

User profile picture
2022-07-19 00:00
Comments