Exercise 8.4.3

This exercise is concerned with the proof of Theorem 8.4.3.

(a)
Prove (8.17).
(b)
Verify the identities (8.18), (8.19) and (8.20).
(c)
Verify the conjugation identity (8.21).

Answers

Theorem. The alternating group A n is simple for all n 5 .

Proof. Let H { e } a normal subgroup of A n . It is sufficient to prove that H = A n . We show first that H contains a 3-cycle. As H { e } , H contains an even permutation σ e . For any 3-cycle ( j 1 j 2 j 3 ) , ( j 1 j 2 j 3 ) A n , and H A n , so

σ 1 ( j 1 j 2 j 3 ) 1 σ ( j 1 j 2 j 3 ) H .

(a)
Suppose that j { j 1 , j 2 , j 3 } and σ ( j ) { j 1 , j 2 , j 3 } .

We show then that σ 1 ( j 1 j 2 j 3 ) 1 σ ( j 1 j 2 j 3 ) fixes j .

As j { j 1 , j 2 , j 3 } , then ( j 1 j 2 j 3 ) j = j , and [ σ ( j 1 j 2 j 3 ) ] j = σ ( j ) .

As σ ( j ) { j 1 , j 2 , j 3 } , and ( j 1 j 2 j 3 ) 1 = ( j 3 j 2 j 1 ) ,

[ ( j 1 j 2 j 3 ) 1 σ ( j 1 j 2 j 3 ) ] j = ( j 1 j 2 j 3 ) 1 σ ( j ) = σ ( j ) .

Therefore

[ σ 1 ( j 1 j 2 j 3 ) 1 σ ( j 1 j 2 j 3 ) ] j = σ 1 ( σ ( j ) ) = j .

This proves that this commutator is a permutation in H that moves at most 6 elements of { 1 , , n } , the elements j 1 , j 2 , j 3 , σ 1 ( j 1 ) , σ 1 ( j 2 ) , σ 1 ( j 3 ) .

(b)
Case 1. First suppose that one of the cycles in the cycle decomposition of σ has a length 4 , say σ = ( i 1 i 2 i 3 i 4 ) ( ) .

In this case we claim that

λ = σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) = ( i 1 i 3 i 4 ) .

We already know that λ fixes every element k which is not in

A = { i 2 , i 3 , i 4 , σ 1 ( i 2 ) , σ 1 ( i 3 ) , σ 1 ( i 4 ) } = { i 1 , i 2 , i 3 , i 4 } .

If k A , then λ ( k ) = k = ( i 1 i 3 i 4 ) k .
If k = i 1 , λ ( i 1 ) = [ σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) ] i 1 = [ σ 1 ( i 2 i 3 i 4 ) 1 ] i 2 = σ 1 ( i 4 ) = i 3 = ( i 1 i 3 i 4 ) i 1 .
If k = i 2 , λ ( i 2 ) = [ σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) ] i 2 = [ σ 1 ( i 2 i 3 i 4 ) 1 ] i 4 = i 2 = ( i 1 i 3 i 4 ) i 2
If k = i 3 , λ ( i 3 ) = [ σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) ] i 3 = [ σ 1 ( i 2 i 3 i 4 ) 1 ] σ ( i 4 ) = σ 1 ( σ ( i 4 ) ) = i 4 = ( i 1 i 3 i 4 ) i 3 (since σ ( i 4 ) { i 2 , i 3 , i 4 } ).
If k = i 4 , λ ( i 4 ) = [ σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) ] i 4 = [ σ 1 ( i 2 i 3 i 4 ) 1 ] i 3 = σ 1 ( i 2 ) = i 1 = ( i 1 i 3 i 4 ) i 4 .

k { 1 , , n } , λ k = ( i 1 i 3 i 4 ) k , so λ = ( i 1 i 3 i 4 ) .

In this case, H contains the 3-cycle ( i 1 i 3 i 4 ) .

Case 2. Next suppose that σ has a 3-cycle. If σ is a 3-cycle, then we are done. Hence we may assume that σ = ( i 1 i 2 i 3 ) ( i 4 i 5 ) .

We show that

μ = σ 1 ( i 2 i 3 i 5 ) 1 σ ( i 2 i 3 i 5 ) = ( i 1 i 4 i 2 i 3 i 5 ) .

We know that μ fixes every element not in the set

B = { i 2 , i 3 , i 5 , σ 1 ( i 2 ) , σ 1 ( i 3 ) , σ 1 ( i 5 ) } = { i 1 , i 2 , i 3 , i 4 , i 5 } .

If k B , μ ( k ) = k = ( i 1 i 4 i 2 i 3 i 5 ) k .
If k = i 1 , [ σ 1 ( i 2 i 3 i 5 ) 1 σ ( i 2 i 3 i 5 ) ] i 1 = [ σ 1 ( i 2 i 3 i 5 ) 1 ] i 2 = σ 1 ( i 5 ) = i 4 = ( i 1 i 4 i 2 i 3 i 5 ) i 1
If k = i 2 , [ σ 1 ( i 2 i 3 i 5 ) 1 σ ( i 2 i 3 i 5 ) ] i 2 = [ σ 1 ( i 2 i 3 i 5 ) 1 ] i 1 = σ 1 ( i 1 ) = i 3 = ( i 1 i 4 i 2 i 3 i 5 ) i 2
If k = i 3 , [ σ 1 ( i 2 i 3 i 5 ) 1 σ ( i 2 i 3 i 5 ) ] i 3 = [ σ 1 ( i 2 i 3 i 5 ) 1 ] σ ( i 5 ) = σ 1 ( σ ( i 5 ) ) = i 5 = ( i 1 i 4 i 2 i 3 i 5 ) i 3 (since σ ( i 5 ) { i 2 , i 3 , i 5 } ).
If k = i 4 , [ σ 1 ( i 2 i 3 i 5 ) 1 σ ( i 2 i 3 i 5 ) ] i 4 = [ σ 1 ( i 2 i 3 i 5 ) 1 ] i 5 = σ 1 ( i 3 ) = i 2 = ( i 1 i 4 i 2 i 3 i 5 ) i 4
If k = i 5 , [ σ 1 ( i 2 i 3 i 5 ) 1 σ ( i 2 i 3 i 5 ) ] i 5 = [ σ 1 ( i 2 i 3 i 5 ) 1 ] i 3 = σ 1 ( i 2 ) = i 1 = ( i 1 i 4 i 2 i 3 i 5 ) i 5

Hence μ = ( i 1 i 4 i 2 i 3 i 5 ) .

As H contains a 5-cycle, by case 1, it contains also a 3-cycle.

Case 3. Finally suppose that σ is a product of disjoint 2-cycles. There must be at least two since σ H A n : σ = ( i 1 i 2 ) ( i 3 i 4 ) ( ) ( ) .

This time, we have

ν = σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) = ( i 1 i 3 ) ( i 2 i 4 ) .

Indeed, every element not in

C = { i 2 , i 3 , i 4 , σ 1 ( i 2 ) , σ 1 ( i 3 ) , σ 1 ( i 4 ) } = { i 1 , i 2 , i 3 , i 4 }

is fixed by ν .

If k C , ν ( k ) = k = ( i 1 i 3 ) ( i 2 i 4 ) k
If k = i 1 , ν ( i 1 ) = [ σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) ] i 1 = [ σ 1 ( i 2 i 3 i 4 ) 1 ] i 2 = σ 1 ( i 4 ) = i 3 = ( i 1 i 3 ) ( i 2 i 4 ) i 1 .
If k = i 2 , ν ( i 2 ) = [ σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) ] i 2 = [ σ 1 ( i 2 i 3 i 4 ) 1 ] i 4 = σ 1 ( i 3 ) = i 4 = ( i 1 i 3 ) ( i 2 i 4 ) i 2 .
If k = i 3 , ν ( i 3 ) = [ σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) ] i 3 = [ σ 1 ( i 2 i 3 i 4 ) 1 ] i 3 = σ 1 ( i 2 ) = i 1 = ( i 1 i 3 ) ( i 2 i 4 ) i 3 .
If k = i 4 , ν ( i 4 ) = [ σ 1 ( i 2 i 3 i 4 ) 1 σ ( i 2 i 3 i 4 ) ] i 4 = [ σ 1 ( i 2 i 3 i 4 ) 1 ] i 1 = σ 1 ( i 1 ) = i 2 = ( i 1 i 3 ) ( i 2 i 4 ) i 4 .

Hence ν = ( i 1 i 3 ) ( i 2 i 4 ) , so ( i 1 i 3 ) ( i 2 i 4 ) H . To turn this into a 3-cycle, let i 5 { i 1 , i 2 , i 3 , i 4 } (this is where we use n 5 ).

Then

( ( i 1 i 3 ) ( i 2 i 4 ) ) 1 ( i 1 i 3 i 5 ) 1 ( i 1 i 3 ) ( i 2 i 4 ) ( i 1 i 3 i 5 ) = ( i 1 i 5 i 3 ) .

We verify this with more simple notations,

( ( 1 3 ) ( 2 4 ) ) 1 ( 1 3 5 ) 1 ( 1 3 ) ( 2 4 ) ( 1 3 5 ) = ( 1 5 3 )

by computing the successive images of 1 2 3 4 5:

1 2 3 4 5 3 2 5 4 1 by ( 1 3 5 ) 1 4 5 2 3 by ( 1 3 ) ( 2 4 ) 5 4 3 2 1 by ( 1 3 5 ) 1 = ( 1 5 3 ) 5 2 1 4 3 by ( ( 1 3 ) ( 2 4 ) ) 1 = ( 1 3 ) ( 2 4 )

This is the permutation ( 1 5 3 ) .

Hence H contains in this case the 3-cycle ( i 1 i 5 i 3 ) .

As every σ e in H satisfies one of these three cases, we can conclude that H contains always a 3-cycle, say ( i j k ) .

(c)
We prove then that H contains all 3-cycles.

If ( i j k ) (where i , j , k are distincts) is any 3-cycle, there exists a permutation 𝜃 S n such that 𝜃 ( i ) = i , 𝜃 ( j ) = j , 𝜃 ( k ) = k .

Recall the following property, which is true for all cycle ( i 1 i 2 i l ) :

𝜃 ( i 1 i 2 i l ) 𝜃 1 = ( 𝜃 ( i 1 ) 𝜃 ( i 2 ) 𝜃 ( i l ) ) .

Indeed,

if 1 k < l , ( 𝜃 ( i 1 i 2 i l ) 𝜃 1 ) ( 𝜃 ( i k ) ) = 𝜃 ( i k + 1 ) ,
if k = l , ( 𝜃 ( i 1 i 2 i l ) 𝜃 1 ) ( 𝜃 ( i l ) ) = 𝜃 ( i 1 ) ,
if x { 𝜃 ( i 1 ) , , 𝜃 ( i l ) } , then 𝜃 1 ( x ) { i 1 , , i l } , hence ( 𝜃 ( i 1 i 2 i l ) 𝜃 1 ) ( x ) = 𝜃 ( 𝜃 1 ( x ) ) = x .

This implies that

𝜃 ( i j k ) 𝜃 1 = ( i j k ) H .

H contains all 3-cycles, and the 3-cycles generate A n (Exercise 2), so H = A n . The group A n , n 5 is simple.

User profile picture
2022-07-19 00:00
Comments