Exercise 9.2.7

This exercise is concerned with the details of Examples 9.2.10, 9.2.11, 9.2.12, and 9.2.13.

(a)
Show that 2 is a primitive root modulo 19 .
(b)
Use the methods of Example 9.2.10 to obtain formulas for ( 6 , 2 ) 2 and ( 6 , 4 ) 2 .
(c)
Show that the formulas of part (b) follow from ( 6 , 1 ) 2 = 4 ( 6 , 2 ) and part (d) of Lemma 9.2.4.
(d)
Prove (9.15) and use this and Exercise 6 to show that ( 6 , 1 ) ( 6 , 2 ) ( 6 , 4 ) = 7 .
(e)
Find the minimal polynomial of ( 3 , 2 ) and ( 3 , 4 ) over the field L 6 considered in Example 9.2.12.
(f)
Show that (9.18) is the minimal polynomial of ζ 19 over the field L 3 considered in Example 9.2.13.

Answers

Proof.

(a)
2 2 = 4 1 ( mod 19 ) , and 2 9 = 512 = 19 × 26 + 18 1 ( mod 19 ) . Therefore the order of [ 2 ] in ( 19 ) is 1 8 , so 2 is a primitive root modulo 19 .
(b)
In Example 9.2.10, we obtained H 6 = { 1 , 7 , 8 , 11 , 12 , 18 } , 2 H 6 = { 2 , 3 , 5 , 14 , 16 , 17 } , 4 H 6 = { 4 , 6 , 9 , 10 , 13 , 15 } .

Verification with Sage:

     a = Mod(8,19)
     lc = [sorted([2^j * a^i for i in range(6)]) for j in range(3)]; print(lc)
     [[1, 7, 8, 11, 12, 18],
      [2, 3, 5, 14, 16, 17],
      [4, 6, 9, 10, 13, 15]]

By Proposition 9.2.9, with ( 6 , 19 ) = ( 6 , 0 ) = 6 ,

( 6 , 1 ) 2 = λ H 6 ( 6 , λ + 1 ) , ( 6 , 2 ) 2 = λ 2 H 6 ( 6 , λ + 2 ) , ( 6 , 4 ) 2 = λ 4 H 6 ( 6 , λ + 4 ) .

( 6 , 1 ) 2 = ( 6 , 2 ) + ( 6 , 8 ) + ( 6 , 9 ) + ( 6 , 12 ) + ( 6 , 13 ) + 6 = 2 ( 6 , 1 ) + ( 6 , 2 ) + 2 ( 6 , 4 ) + 6 = ( 6 , 1 ) + ( 6 , 4 ) + 5 = 4 ( 6 , 2 ) , ( 6 , 2 ) 2 = ( 6 , 4 ) + ( 6 , 5 ) + ( 6 , 7 ) + ( 6 , 16 ) + ( 6 , 18 ) + 6 = 2 ( 6 , 1 ) + 2 ( 6 , 2 ) + ( 6 , 4 ) + 6 = ( 6 , 1 ) + ( 6 , 2 ) + 5 = 4 ( 6 , 4 ) , ( 6 , 4 ) 2 = ( 6 , 8 ) + ( 6 , 10 ) + ( 6 , 13 ) + ( 6 , 14 ) + ( 6 , 17 ) + 6 = ( 6 , 1 ) + 2 ( 6 , 2 ) + 2 ( 6 , 4 ) + 6 = ( 6 , 2 ) + ( 6 , 4 ) + 5 = 4 ( 6 , 1 ) .

( 6 , 1 ) 2 = 4 ( 6 , 2 ) , ( 6 , 2 ) 2 = 4 ( 6 , 4 ) , ( 6 , 4 ) 2 = 4 ( 6 , 1 ) .

If we write η 1 = ( 6 , 1 ) , η 2 = ( 6 , 2 ) , η 3 = ( 6 , 4 ) , then

η 1 2 = 4 η 2 , η 2 2 = 4 η 3 , η 3 2 = 4 η 1 .

(c)
The similarity of these results has an explanation. If σ G = Gal ( ( ζ 19 ) ) is determined by σ ( ζ 19 ) = ζ 19 2 , then by Lemma 9.2.4(d), σ ( ( 6 , 1 ) ) = ( 6 , 2 ) , σ ( ( 6 , 2 ) ) = ( 6 , 4 ) and σ ( ( 6 , 4 ) ) = ( 6 , 8 ) = ( 6 , 1 ) , so

σ ( η 1 ) = η 2 , σ ( η 2 ) = η 3 , σ ( η 3 ) = η 1 .

Therefore η 1 2 = 4 η 2 implies η 2 2 = 4 η 3 and η 3 2 = 4 η 1 .

By Proposition 9.2.6 and Corollary 9.2.7, L 6 = ( η 1 ) = ( η 1 , η 2 , η 3 ) = Vect ( η 1 , η 2 , η 3 ) , and so σ sends L 6 on itself. The restriction σ ~ of σ to ( η 1 ) is so a -automorphism of ( η 1 ) of order 3, since σ ~ 3 ( η 1 ) = η 1 . Moreover, the extension ( η 1 ) is Galois (since G = Gal ( ( ζ 19 ) is Abelian, every subgroup of G is normal), so

Gal ( ( η 1 ) ) Gal ( ( ζ 19 ) ) Gal ( ( ζ 19 ) ( η 1 ) ) ,

thus

| Gal ( ( η 1 ) ) | = [ ( η 1 ) : ] = ( G : H ~ 6 ) = ( ( 19 ) : H 6 ) = 3 ,

therefore

Gal ( ( η 1 ) ) 3 , Gal ( ( η 1 ) ) = σ ~ .

(d)
( 6 , 1 ) ( 6 , 2 ) = λ H 6 ( 6 , λ + 2 ) = ( 6 , 3 ) + ( 6 , 9 ) + ( 6 , 10 ) + ( 6 , 13 ) + ( 6 , 14 ) + ( 6 , 1 ) = ( 6 , 2 ) + ( 6 , 4 ) + ( 6 , 4 ) + ( 6 , 4 ) + ( 6 , 2 ) + ( 6 , 1 ) = ( 6 , 1 ) + 2 ( 6 , 2 ) + 3 ( 6 , 4 ) .

If we apply σ , σ 2 to this equality, we obtain (9.15) :

( 6 , 1 ) ( 6 , 2 ) = ( 6 , 1 ) + 2 ( 6 , 2 ) + 3 ( 6 , 4 ) , ( 6 , 2 ) ( 6 , 4 ) = 3 ( 6 , 1 ) + ( 6 , 2 ) + 2 ( 6 , 4 ) , ( 6 , 4 ) ( 6 , 1 ) = 2 ( 6 , 1 ) + 3 ( 6 , 2 ) + ( 6 , 4 ) .

It follows

( 6 , 1 ) ( 6 , 2 ) ( 6 , 4 ) = ( 6 , 1 ) ( 3 ( 6 , 1 ) + ( 6 , 2 ) + 2 ( 6 , 4 ) ) = 3 ( 6 , 1 ) 2 + ( 6 , 1 ) ( 6 , 2 ) + 2 ( 6 , 1 ) ( 6 , 4 ) = [ 12 3 ( 6 , 2 ) ] + [ ( 6 , 1 ) + 2 ( 6 , 2 ) + 3 ( 6 , 4 ) ] + 2 [ 2 ( 6 , 1 ) + 3 ( 6 , 2 ) + ( 6 , 4 ) ] = 12 + 5 ( 6 , 1 ) + 5 ( 6 , 2 ) + 5 ( 6 , 4 ) = 7

We have obtained

η 1 + η 2 + η 3 = 1 , η 1 η 2 + η 2 η 3 + η 3 η 1 = 6 , η 1 η 2 η 3 = 7 .

Hence the minimal polynomial of η 1 over (and also of η 2 , η 3 ) is

f = ( x η 1 ) ( x η 2 ) ( x η 3 ) = x 3 + x 2 6 x 7 .

The splitting field of f is L 6 = ( η 1 ) generated by the 6-periods.

(e)
We obtain the cosets λ H 3 with Sage:
     b = Mod(2^6, 19)
     ld = [sorted([2^j * b^i for i in range(3)]) for j in range(6)]; ld
     [[1, 7, 11], [2, 3, 14], [4, 6, 9], [8, 12, 18], [5, 16, 17], [10, 13, 15]]

Since

H 6 = { 1 , 7 , 11 } { 8 , 12 , 18 } = H 3 8 H 3 , 2 H 6 = { 2 , 3 , 14 } { 5 , 16 , 17 } = 2 H 3 16 H 3 , 4 H 6 = { 4 , 6 , 9 } { 10 , 13 , 15 } = 4 H 3 13 H 3 ,

we obtain

( 6 , 1 ) = ( 3 , 1 ) + ( 3 , 8 ) , ( 6 , 2 ) = ( 3 , 2 ) + ( 3 , 16 ) , ( 6 , 4 ) = ( 3 , 4 ) + ( 3 , 13 ) .

In Example 9.2.12, we have proved that the minimal polynomial of ( 3 , 1 ) and ( 3 , 8 ) over L 6 is

( x ( 3 , 1 ) ) ( x ( 3 , 8 ) ) = x 2 ( 6 , 1 ) x + ( 6 , 4 ) + 3 = x 2 η 1 x + η 2 + 3 .

If σ Gal ( ( ζ p ) ) is determined by σ ( ζ 19 ) = ζ 19 2 then σ ( ( 3 , 1 ) ) = ( 3 , 2 ) , σ ( ( 3 , 8 ) ) = ( 3 , 16 ) , σ ( ( 6 , 1 ) ) = ( 6 , 2 ) , σ ( 6 , 4 ) = ( 6 , 8 ) = ( 6 , 1 ) , so the minimal polynomial of ( 3 , 2 ) is

( x ( 3 , 2 ) ) ( x ( 3 , 16 ) ) = x 2 ( 6 , 2 ) x + ( 6 , 1 ) + 3 .

Similarly, applying σ 2 , we obtain

( x ( 3 , 4 ) ) ( x ( 3 , 13 ) ) = x 2 ( 6 , 4 ) x + ( 6 , 2 ) + 3 .

(f)
The extension L 1 L 3 = ( ζ 19 ) ( ( 3 , 1 ) ) is an extension of degree d = 3 .

Here [ 1 ] H 3 = { [ 1 ] , [ 7 ] , [ 11 ] } = [ 1 ] H 1 [ 7 ] H 1 [ 11 ] H 1 (with H 1 = { 1 } ). Proposition 9.2.8 shows that the minimal polynomial of ζ 19 over L 3 is

( x ( 1 , 1 ) ) ( x ( 1 , 7 ) ) ( x ( 1 , 11 ) ) = ( x ζ 19 ) ( x ζ 19 7 ) ( x ζ 19 11 ) .

Without Proposition 9.2.8, note that Gal ( L 1 L 3 ) = H ~ 3 = σ 6 = { e , σ 6 , σ 12 } , where σ 6 takes ζ 19 to ζ 19 2 6 = ζ 19 7 , so the minimal polynomial of ζ 19 over L 3 is

( x ζ 19 ) ( x σ 6 ( ζ 19 ) ) ( x σ 12 ( ζ 19 ) ) = ( x ζ 19 ) ( x ζ 19 7 ) ( x ζ 19 11 ) .

As

ζ 19 + ζ 19 7 + ζ 19 11 = ( 3 , 1 ) , ζ 19 ζ 19 7 ζ 19 11 = ζ 19 19 = 1 , ζ 19 ζ 19 7 + ζ 19 7 ζ 19 11 + ζ 19 ζ 19 11 = ζ 19 8 + ζ 19 18 + ζ 19 12 = ( 3 , 8 ) ,

we obtain that the minimal polynomial of ζ 19 over L 3 is

( x ζ 19 ) ( x ζ 19 7 ) ( x ζ 19 11 ) = x 3 ( 3 , 1 ) x 2 + ( 3 , 8 ) x 1 .

User profile picture
2022-07-19 00:00
Comments