Exercise 9.2.8

In this exercise and the next, you will derive Gauss’s radical formula (9.19) for cos ( 2 π 17 ) .

(a)
Show that 3 is a primitive root modulo 17 .
(b)
Show that H 8 = { 1 , 2 , 4 , 8 , 9 , 13 , 15 , 16 } , H 4 = { 1 , 4 , 13 , 16 } , H 2 = { 1 , 16 } .
(c)
Use Propositions 9.2.8 and 9.2.9 to compute the following minimal polynomials: Extension Primitive Elements Minimal Polynomial L 8 ( 8 , 1 ) , ( 8 , 3 ) x 2 + x 4 L 8 L 4 ( 4 , 1 ) , ( 4 , 2 ) x 2 ( 8 , 1 ) x 1 ( 4 , 3 ) , ( 4 , 6 ) x 2 ( 8 , 3 ) x 1 L 4 L 2 ( 2 , 1 ) , ( 2 , 4 ) x 2 ( 4 , 1 ) x + ( 4 , 3 )

The resulting quadratic equations are easy to solve using quadratic formula. But how do the roots correspond to the periods? For example, the roots ( 8 , 1 ) , ( 8 , 3 ) of x 2 + x 4 are ( 1 ± 17 ) 2 . How do these match up? The answer will be given in the next exercise.

Answers

Proof.

(a)
By Exercise 1, 3 8 9 4 = 8 1 2 ( 4 ) 2 1 1 ( mod 17 ) , therefore the order of [ 3 ] in ( 17 ) is 16 , so 3 is a primitive root modulo 17 .
(b)
H 8 = 3 2 = { 1 , 9 , 9 2 , 9 3 , 1 , 9 , 9 2 , 9 3 } = { 1 , 9 , 4 , 2 , 1 , 9 , 4 , 2 } = { 1 , 9 , 13 , 15 , 16 , 8 , 4 , 2 } ,

H 4 = 3 4 = { 1 , 13 , 16 , 4 } , and H 2 = 3 8 = { 1 , 16 } , so

H 8 = { 1 , 2 , 4 , 8 , 9 , 13 , 15 , 16 } , H 4 = { 1 , 4 , 13 , 16 } , H 2 = { 1 , 16 } .
(c)
Extension L 8 .

The cosets of H 8 in ( 17 ) are

H 8 = { 1 , 2 , 4 , 8 , 9 , 13 , 15 , 16 } , 3 H 8 = { 3 , 6 , 12 , 7 , 10 , 5 , 11 , 14 } .

(Verification Sage :

         a = Mod(3,17)
         lc = [sorted([a^j*a^(2*i) for i in range(8)]) for j in range(2)]; lc
         [[1, 2, 4, 8, 9, 13, 15, 16], [3, 5, 6, 7, 10, 11, 12, 14]] )

L 8 is generated over by the 8-periods ( 8 , 1 ) , ( 8 , 3 ) , where ( 8 , 1 ) + ( 8 , 3 ) = 1 , and

( 8 , 1 ) ( 8 , 3 ) = λ H 8 ( 8 , λ + 3 ) = ( 8 , 4 ) + ( 8 , 5 ) + ( 8 , 7 ) + ( 8 , 11 ) + ( 8 , 12 ) + ( 8 , 16 ) + ( 8 , 1 ) + ( 8 , 2 ) = 4 ( 8 , 1 ) + 4 ( 8 , 3 ) = 4 .

The minimal polynomial over of the 8-periods ( 8 , 1 ) , ( 8 , 3 ) is so

( x ( 8 , 1 ) ) ( x ( 8 , 3 ) ) = x 2 + x 4 .

Extension L 8 L 4 .

H 8 = { 1 , 4 , 13 , 16 } { 2 , 8 , 9 , 15 } = H 4 2 H 4 , 3 H 8 = { 3 , 5 , 12 , 14 } { 6 , 7 , 10 , 11 } = 3 H 4 6 H 4 . The 4-periods are so ( 4 , 1 ) , ( 4 , 2 ) , and ( 4 , 3 ) , ( 4 , 6 ) , where ( 4 , 1 ) + ( 4 , 2 ) = ( 8 , 1 ) , ( 4 , 1 ) × ( 4 , 2 ) = λ H 4 ( 4 , λ + 2 ) = ( 4 , 3 ) + ( 4 , 7 ) + ( 4 , 15 ) + ( 4 , 1 ) = 1 .

The minimal polynomial of ( 4 , 1 ) and ( 4 , 2 ) over L 8 is so

( x ( 4 , 1 ) ) ( x ( 4 , 2 ) ) = x 2 ( 8 , 1 ) x 1 .

Applying σ : ζ 17 ζ 17 3 , we obtain the minimal polynomial of ( 4 , 3 ) and ( 4 , 6 )

( x ( 4 , 3 ) ) ( x ( 4 , 6 ) ) = x 2 ( 8 , 3 ) x 1 .

Extension L 4 L 2 . H 4 = { 1 , 16 } { 4 , 13 } = H 2 4 H 2 , 3 H 4 = { 3 , 14 } { 5 , 12 } = 3 H 2 5 H 2 ,

The 2 -periods ( 2 , 1 ) , ( 2 , 4 ) satisfy

( 2 , 1 ) + ( 2 , 4 ) = ( 4 , 1 ) , ( 2 , 1 ) × ( 2 , 4 ) = λ H 2 ( 2 , λ + 4 ) = ( 2 , 5 ) + ( 2 , 3 ) = ( 4 , 3 ) .

The minimal polynomial of ( 2 , 1 ) and ( 2 , 4 ) over L 4 is so

( x ( 2 , 1 ) ) ( x ( 2 , 4 ) ) = x 2 ( 4 , 1 ) x + ( 4 , 3 ) .

User profile picture
2022-07-19 00:00
Comments