Exercise 9.2.9

In this exercise, you will use numerical computations and the previous exercise to find radical expressions for various f -periods when p = 17 .

(a)
Show that ( 8 , 1 ) = 2 cos ( 2 π 17 ) + 2 cos ( 4 π 17 ) + 2 cos ( 8 π 17 ) + 2 cos ( 16 π 17 ) ( 4 , 1 ) = 2 cos ( 2 π 17 ) + 2 cos ( 8 π 17 ) ( 4 , 3 ) = 2 cos ( 6 π 17 ) + 2 cos ( 10 π 17 ) ( 2 , 1 ) = 2 cos ( 2 π 17 )

Then compute each of these periods to five decimal places.

(b)
Use the numerical computations of part (a) and the quadratic polynomials of Exercise 8 to show that ( 8 , 1 ) = 1 2 ( 1 + 17 ) ( 8 , 3 ) = 1 2 ( 1 17 ) ( 4 , 1 ) = 1 4 ( 1 + 17 + 34 2 17 ) ( 4 , 2 ) = 1 4 ( 1 + 17 34 2 17 ) ( 4 , 3 ) = 1 4 ( 1 17 + 34 + 2 17 )
(c)
Use the quadratic polynomial x 2 ( 4 , 1 ) x + ( 4 , 3 ) and part (b) to derive (9.19).

Answers

Proof. Recall (see Exercise 8) that

H 8 = { 1 , 2 , 4 , 8 , 9 , 13 , 15 , 16 } H 4 = { 1 , 4 , 13 , 16 } 3 H 4 = { 3 , 5 , 12 , 14 } H 2 = { 1 , 16 }

Write ζ = ζ 17 .

(a)
Using these results, and ζ k = ζ 17 k , k = 1 , 2 , 4 , 8 , and also ζ k + ζ k = 2 cos ( 2 17 ) , we obtain ( 8 , 1 ) = [ a ] H 8 ζ a = ζ + ζ 2 + ζ 4 + ζ 8 + ζ 9 + ζ 13 + ζ 15 + ζ 16 = ( ζ + ζ 1 ) + ( ζ 2 + ζ 2 ) + ( ζ 4 + ζ 4 ) + ( ζ 8 + ζ 8 ) = 2 cos ( 2 π 17 ) + 2 cos ( 4 π 17 ) + 2 cos ( 8 π 17 ) + 2 cos ( 16 π 17 ) ( 4 , 1 ) = [ a ] H 4 ζ a = ζ + ζ 4 + ζ 13 + ζ 16 = ( ζ + ζ 1 ) + ( ζ 4 + ζ 4 ) = 2 cos ( 2 π 17 ) + 2 cos ( 8 π 17 ) ( 4 , 3 ) = [ a ] 3 H 4 ζ a = ζ 3 + ζ 5 + ζ 12 + ζ 14 = ( ζ 3 + ζ 3 ) + ( ζ 5 + ζ 5 ) = 2 cos ( 6 π 17 ) + 2 cos ( 10 π 17 ) ( 2 , 1 ) = [ a ] H 2 ζ a = ζ + ζ 16 = ζ + ζ 1 = 2 cos ( 2 π 17 )

( 2 , 1 ) = 2 cos ( 2 π 17 ) 0.93247 ,

( 4 , 1 ) 2.04948 , ( 4 , 3 ) 0.34415 ,

( 8 , 1 ) 1.56155 .

As ( 4 , 1 ) + ( 4 , 2 ) = ( 8 , 1 ) , we obtain ( 4 , 2 ) 0.48792 < 0 .

(b)
By Exercise 8, ( 8 , 1 ) , ( 8 , 3 ) are the roots of x 2 + x 4 , and by part (a) ( 8 , 1 ) > 0 . The only positive root of x 2 + x 4 is ( 1 + 17 ) 2 , therefore ( 8 , 1 ) = 1 2 ( 1 + 17 ) , ( 8 , 3 ) = 1 2 ( 1 17 ) .

( 4 , 1 ) , ( 4 , 2 ) are the roots of x 2 ( 8 , 1 ) x 1 , with discriminant

Δ = 1 4 ( 1 + 17 ) 2 + 4 = 1 4 ( 34 2 17 ) ,

therefore

{ ( 4 , 1 ) , ( 4 , 2 ) } = { 1 4 ( 1 + 17 + 34 2 17 ) , 1 4 ( 1 + 17 34 2 17 ) } .

By part (a) ( 4 , 2 ) < 0 < ( 4 , 1 ) , so

( 4 , 1 ) = 1 4 ( 1 + 17 + 34 2 17 ) , ( 4 , 2 ) = 1 4 ( 1 + 17 34 2 17 ) .

( 4 , 3 ) , ( 4 , 6 ) are the roots of x 2 ( 8 , 3 ) x 1 , with discriminant

Δ = 1 4 ( 1 17 ) 2 + 4 = 1 4 ( 34 + 2 17 ) ,

therefore

{ ( 4 , 3 ) , ( 4 , 6 ) } = { 1 4 ( 1 17 + 34 + 2 17 ) , 1 4 ( 1 17 34 + 2 17 ) } .

As ( 4 , 3 ) > 0 ,

( 4 , 3 ) = 1 4 ( 1 17 + 34 + 2 17 ) , ( 4 , 6 ) = 1 4 ( 1 17 34 + 2 17 ) .
(c)
( 2 , 1 ) = 2 cos ( 2 π 17 ) , and also ( 2 , 4 ) , is root of x 2 ( 4 , 1 ) x + ( 4 , 3 ) , with discriminant Δ = ( 4 , 1 ) 2 4 ( 4 , 3 ) .

As

( 4 , 1 ) 2 = λ H 4 ( 4 , λ + 1 ) = ( 4 , 2 ) + ( 4 , 5 ) + ( 4 , 14 ) + 4 = ( 4 , 2 ) + 2 ( 4 , 3 ) + 4 ,

then

Δ = ( 4 , 2 ) 2 ( 4 , 3 ) + 4 = 1 4 ( 1 + 17 34 2 17 2 ( 1 17 + 34 + 2 17 ) + 16 ) = 1 4 ( 17 + 3 17 34 2 17 2 34 + 2 17 ) .

The roots of x 2 ( 4 , 1 ) x + ( 4 , 3 ) are so 1 2 ( ( 4 , 1 ) ± Δ )

= 1 8 ( 1 + 17 + 34 2 17 ) ± 1 4 17 + 3 17 34 2 17 2 34 + 2 17 .

As ( 2 , 4 ) = 2 cos ( 8 π 17 ) < 2 cos ( 2 π 17 ) = ( 2 , 1 ) , we can conclude that

cos ( 2 π 17 ) = 1 16 + 1 16 17 + 1 16 34 2 17 + 1 8 17 + 3 17 34 2 17 2 34 + 2 17 .
User profile picture
2022-07-19 00:00
Comments