Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 0.2.11 ($d \mid n \Rightarrow \varphi(d) \mid \varphi(n)$)

Exercise 0.2.11 ($d \mid n \Rightarrow \varphi(d) \mid \varphi(n)$)

Prove that if d divides n , then φ ( d ) divides φ ( n ) .

Answers

(See Niven Ex. 2.5.3)

Proof.

If d = 1 , φ ( d ) = 1 φ ( m ) . If d > 1 , and d m , we can write the decompositions of d , m in prime factors:

m = i I p i a i , a i > 0 , d = i J p i b i , 0 < b i a i ,

where J I .

Then

φ ( m ) = i I p i a i 1 ( p i 1 ) , φ ( d ) = j J p i b i 1 ( p i 1 ) .

For every i J , b i a i , thus p i b i 1 p i a i 1 , so p i b i 1 ( p i 1 ) p i a i 1 ( p i 1 ) . Since J I , φ ( d ) φ ( n ) . □

User profile picture
2025-12-27 12:23
Comments