Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 0.2.5 (Some values of $\varphi$)

Exercise 0.2.5 (Some values of $\varphi$)

Determine the value φ ( n ) for each integer n 30 where φ denotes the Euler φ -function.

Answers

Proof. We know that, for n = p 1 α 1 p 2 α 2 p s α s (where p 1 , p 2 , , p s are distinct primes), then

φ ( n ) = p 1 α 1 1 ( p 1 1 ) p 2 α 2 1 ( p 2 1 ) p s α s 1 ( p s 1 ) .

For instance, for n = 12 = 2 2 3 ,

φ ( 12 ) = 2 1 ( 2 1 ) 3 0 ( 3 1 ) = 4 .

With Sagemath:

sage: for n in range (1,31):
....:     print(n, euler_phi(n))
....:
(1, 1)
(2, 1)
(3, 2)
(4, 2)
(5, 4)
(6, 2)
(7, 6)
(8, 4)
(9, 6)
(10, 4)
(11, 10)
(12, 4)
(13, 12)
(14, 6)
(15, 8)
(16, 8)
(17, 16)
(18, 6)
(19, 18)
(20, 8)
(21, 12)
(22, 10)
(23, 22)
(24, 8)
(25, 20)
(26, 12)
(27, 18)
(28, 12)
(29, 28)
(30, 8)

User profile picture
2025-12-25 11:20
Comments