Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 0.3.4 ($37^{100} \mod 29$)

Exercise 0.3.4 ($37^{100} \mod 29$)

Compute the remainder when 3 7 100 is divided by 29 .

Answers

Proof. Since 29 is a prime number, by Fermat’s Theorem,

3 7 28 1 ( 𝑚𝑜𝑑 29 ) .

Therefore

3 7 100 = 3 7 3 28 + 16 = ( 3 7 28 ) 3 3 7 16 3 7 16 ( 𝑚𝑜𝑑 29 ) .

Moreover, modulo 29 ,

37 8 3 7 2 8 2 = 64 6 3 7 4 6 2 = 36 7 3 7 8 7 2 = 49 20 , 3 7 16 2 0 2 ( 9 ) 2 = 81 23 ( 𝑚𝑜𝑑 29 ) .

So

3 7 100 23 ( 𝑚𝑜𝑑 29 ) ,

where 0 23 < 29 . Therefore the remainder when 3 7 100 is divided by 29 is 23 . □

With Sagemath:

sage: a = Mod(37, 29)
sage: a^100
23

User profile picture
2026-01-07 10:27
Comments