Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 0.3.5 ($9^{1500} \mod 100$)

Exercise 0.3.5 ($9^{1500} \mod 100$)

Proof. We compute modulo 100 :

9 4 = 8 1 2 = 6561 61 , 9 8 6 1 2 = 4021 21 , 9 10 = 9 8 9 2 21 81 = 1701 1 ( 𝑚𝑜𝑑 100 ) .

Therefore

9 1500 = ( 9 10 ) 150 1 ( 𝑚𝑜𝑑 1 ) 00 .

The last two digits of 9 1500 are 01 . □

With Sagemath:

sage: a = Mod(9, 100)
sage: a^1500
1
sage: a.multiplicative_order()
10