Homepage › Solution manuals › David S. Dummit › Abstract Algebra › Exercise 0.3.5 ($9^{1500} \mod 100$)
Exercise 0.3.5 ($9^{1500} \mod 100$)
Proof. We compute modulo :
Therefore
The last two digits of are . □
With Sagemath:
sage: a = Mod(9, 100) sage: a^1500 1 sage: a.multiplicative_order() 10