Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.3.18 (Order of the elements of $S_5$)

Exercise 1.3.18 (Order of the elements of $S_5$)

Find all numbers n such that S 5 contains an element of order n . [Use Exercise 15.]

Answers

Proof. Let σ be any element of S 5 .

By Exercise 15, the order σ equals the least common multiple of the lengths of the cycles in its decomposition.

The ways to decompose 5 in some of integers are

( 1 , 1 , 1 , 1 , 1 ) , ( 2 , 1 , 1 , 1 ) , ( 2 , 2 , 1 ) , ( 3 , 1 , 1 ) , ( 3 , 2 ) , ( 4 , 1 ) , ( 5 ) .

Each way corresponds to a type of cycle decomposition, so the cycle decomposition of σ is one of the following forms

σ | σ |
e 1
( a b ) 2
( a b ) ( c d ) 2
( a b c ) 3
( a b c ) ( e f ) 6
( a b c d ) 4
( a b c d e ) 5

So the orders of the permutations of S 5 are 1 , 2 , 3 , 4 , 5 , 6 . □

Verification with Sagemath:

sage: G = SymmetricGroup(5); G
Symmetric group of order 5! as a permutation group
sage: s = set()
sage: for sigma in G:
....:     s.add(sigma.cycle_type())
....: s
....:
{[1, 1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1], [3, 1, 1], [3, 2], [4, 1], [5]}
sage: s = set()
sage: for sigma in G:
....:     s.add(lcm(sigma.cycle_type()))
....: s
....:
{1, 2, 3, 4, 5, 6}

User profile picture
2025-09-16 16:42
Comments