Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.3.19 (Order of the elements of $S_7$)

Exercise 1.3.19 (Order of the elements of $S_7$)

Find all numbers n such that S 7 contains an element of order n . [Use Exercise 15.]

Answers

Proof. Let σ be any element of S 7 .

As in Exercise 19, the ways to decompose 7 in some of integers are

[ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] , [ 2 , 1 , 1 , 1 , 1 , 1 ] , [ 2 , 2 , 1 , 1 , 1 ] , [ 2 , 2 , 2 , 1 ] , [ 3 , 1 , 1 , 1 , 1 ] , [ 3 , 2 , 1 , 1 ] , [ 3 , 2 , 2 ] , [ 3 , 3 , 1 ] , [ 4 , 1 , 1 , 1 ] , [ 4 , 2 , 1 ] , [ 4 , 3 ] , [ 5 , 1 , 1 ] , [ 5 , 2 ] , [ 6 , 1 ] , [ 7 ] .

Each way corresponds to a type of cycle decomposition, so the cycle decomposition of σ is one of the following forms

type σ | σ |
[ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] e 1
[ 2 , 1 , 1 , 1 , 1 , 1 ] ( a b ) 2
[ 2 , 2 , 1 , 1 , 1 ] ( a b ) ( c d ) 2
[ 2 , 2 , 2 , 1 ] ( a b ) ( c d ) ( e f ) 2
[ 3 , 1 , 1 , 1 , 1 ] ( a b c ) 3
[ 3 , 2 , 1 , 1 ] ( a b c ) ( d e ) 6
[ 3 , 2 , 2 ] ( a b c ) ( d e ) ( f g ) 6
[ 3 , 3 , 1 ] ( a b c ) ( d e f ) 3
[ 4 , 1 , 1 , 1 ] ( a b c d ) 4
[ 4 , 2 , 1 ] ( a b c d ) ( e f ) 4
[ 4 , 3 ] ( a b c d ) ( e f g ) 12
[ 5 , 1 , 1 ] ( a b c d e ) 5
[ 5 , 2 ] ( a b c d e ) ( f g ) 10
[ 6 , 1 ] ( a b c d e f ) 6
[ 7 ] ( a b c d e f g ) 7

So the orders of the permutations of S 7 are 1 , 2 , 3 , 4 , 5 , 6 , 7 , 10 , 12 . □

Verification with Sagemath:

sage: G = SymmetricGroup(7); G
Symmetric group of order 7! as a permutation group
sage: s = set()
sage: for sigma in G:
....:     s.add(sigma.cycle_type())
....: s
....:

{[1, 1, 1, 1, 1, 1, 1],
 [2, 1, 1, 1, 1, 1],
 [2, 2, 1, 1, 1],
 [2, 2, 2, 1],
 [3, 1, 1, 1, 1],
 [3, 2, 1, 1],
 [3, 2, 2],
 [3, 3, 1],
 [4, 1, 1, 1],
 [4, 2, 1],
 [4, 3],
 [5, 1, 1],
 [5, 2],
 [6, 1],
 [7]}
sage: s = set()
sage: for sigma in G:
....:     s.add(lcm(sigma.cycle_type()))
....: s
....:
{1, 2, 3, 4, 5, 6, 7, 10, 12}

User profile picture
2025-09-16 17:08
Comments