Homepage › Solution manuals › David S. Dummit › Abstract Algebra › Exercise 1.3.2 (Cycle decompositions 2)
Exercise 1.3.2 (Cycle decompositions 2)
Let be the permutation
and let be the permutation
Find the cycle decompositions of the following permutations: , and .
Answers
Proof. Using the Cycle Decomposition Algorithm, we obtain
Since the disjoint cycles commute,
Thus
Moreover
Verifications with Sagemath
(the usual product * is from the composition from left to write, so I used “sigma.left_action(tau)” to compute )
sage: sigma = Permutation([13, 2, 15, 14, 10, 6, 12, 3, 4, 1, 7, 9, 5, 11, 8]); sigma [13, 2, 15, 14, 10, 6, 12, 3, 4, 1, 7, 9, 5, 11, 8] sage: tau = Permutation([14, 9, 10, 2, 12, 6, 5, 11, 15, 3, 8, 7, 4, 1, 13]) sage: tau2 = tau * tau; tau2 [1, 15, 3, 9, 7, 6, 12, 8, 13, 10, 11, 5, 2, 14, 4] sage: sigma2 = sigma * sigma sage: sigma_tau = sigma.left_action_product(tau); sigma_tau [11, 4, 1, 2, 9, 6, 10, 7, 8, 15, 3, 12, 14, 13, 5] sage: tau_sigma = tau.left_action_product(sigma); tau_sigma [4, 9, 13, 1, 3, 6, 7, 10, 2, 14, 5, 15, 12, 8, 11] sage: sigma.cycle_string() ’(1,13,5,10)(3,15,8)(4,14,11,7,12,9)’ sage: tau.cycle_string() ’(1,14)(2,9,15,13,4)(3,10)(5,12,7)(8,11)’ sage: sigma_tau.cycle_string() ’(1,11,3)(2,4)(5,9,8,7,10,15)(13,14)’ sage: tau_sigma.cycle_string() ’(1,4)(2,9)(3,13,12,15,11,5)(8,10,14)’ sage: eta = tau2.left_action_product(sigma); eta [2, 15, 4, 14, 10, 6, 5, 3, 9, 1, 12, 13, 7, 11, 8] sage: eta.cycle_string() ’(1,2,15,8,3,4,14,11,12,13,7,5,10)’
This confirms our results. □