Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.3.4 (Orders of the elements of $S_3$, of $S_4$)

Exercise 1.3.4 (Orders of the elements of $S_3$, of $S_4$)

Compute the order of each of the elements in the following groups: (a) S 3 (b) S 4 .

Answers

Proof.

(a)
Order of the elements of S 3 : σ | σ | ( ) 1 ( 1 2 ) 2 ( 1 3 ) 2 ( 2 3 ) 2 ( 1 2 3 ) 3 ( 1 3 2 ) 3

(b)
Order of the elements of S 4 : σ | σ | ( ) 1 ( 1 2 ) 2 ( 1 2 3 4 ) 4 ( 1 3 ) ( 2 4 ) 2 ( 1 3 4 ) 3 ( 2 3 4 ) 3 ( 1 4 3 2 ) 4 ( 1 3 4 2 ) 4 ( 1 3 2 4 ) 4 ( 1 4 2 3 ) 4 ( 1 2 4 3 ) 4 ( 2 4 3 ) 3 ( 1 4 3 ) 3 ( 1 4 ) ( 2 3 ) 2 ( 1 4 2 ) 3 ( 1 3 2 ) 3 ( 1 3 ) 2 ( 3 4 ) 2 ( 2 4 ) 2 ( 1 4 ) 2 ( 2 3 ) 2 ( 1 2 ) ( 3 4 ) 2 ( 1 2 3 ) 3 ( 1 2 4 ) 3

We obtained the list of the elements of S 4 by

     sage: G = SymmetricGroup(4); G
     Symmetric group of order 4! as a permutation group
     sage: l = [sigma for sigma in G]; l
     
     [(),
      (1,2),
      (1,2,3,4),
      (1,3)(2,4),
      (1,3,4),
      (2,3,4),
      (1,4,3,2),
      (1,3,4,2),
      (1,3,2,4),
      (1,4,2,3),
      (1,2,4,3),
      (2,4,3),
      (1,4,3),
      (1,4)(2,3),
      (1,4,2),
      (1,3,2),
      (1,3),
      (3,4),
      (2,4),
      (1,4),
      (2,3),
      (1,2)(3,4),
      (1,2,3),
      (1,2,4)]

User profile picture
2025-09-12 10:07
Comments