Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.4.11 (Heisenberg group over $F$)

Exercise 1.4.11 (Heisenberg group over $F$)

Let H ( F ) = { ( 1 a b 0 1 c 0 0 1 ) a , b , c F } — called the Heisenberg group over F . Let X = ( 1 a b 0 1 c 0 0 1 ) and Y = ( 1 d e 0 1 f 0 0 1 ) be elements of H ( F ) .

(a)
Compute the matrix product XY and deduce that H ( F ) is closed under matrix multiplication. Exhibit matrices such that XY Y X (so that H ( F ) is always non-abelian).
(b)
Find an explicit formula for the matrix inverse X 1 and deduce that H ( F ) is closed under inverses.
(c)
Prove the associative law for H ( F ) and deduce that H ( F ) is a group of order | F | 3 .

(Do not assume that matrix multiplication is associative.)

(d)
Find the order of each element of the finite group H ( 2 ) .
(e)
Prove that every nonidentity element of the group H ( ) has infinite order.

Answers

Proof. Let

H ( F ) = { ( 1 a b 0 1 c 0 0 1 ) a , b , c F } .

(a)
Let X = ( 1 a b 0 1 c 0 0 1 ) and Y = ( 1 d e 0 1 f 0 0 1 ) be elements of H ( F ) . Then XY = ( 1 d + a e + af + b 0 1 f + c 0 0 1 ) = ( 1 A B 0 1 C 0 0 1 ) ,

where ( A , B , C ) = ( d + a , e + af + b , f + c ) F 3 . Thus XY H ( F ) , so H ( F ) is closed under matrix multiplication.

Put X = ( 1 1 0 0 1 1 0 0 1 ) , Y = ( 1 0 0 0 1 1 0 0 1 ) . Then

XY = ( 1 1 1 0 1 1 + 1 0 0 1 ) ( 1 1 0 0 1 1 + 1 0 0 1 ) = Y X ,

since 1 0 in any field. So H ( F ) is always non-abelian.

(b)
If C is the matrix of cofactors of X , then X 1 = 1 det ( X ) C T , where C is the cofactor matrix. This gives X 1 = ( 1 a ac b 0 1 c 0 0 1 ) .

Therefore X 1 H , so H ( F ) is closed under inverses.

(c)
H ( F ) GL n ( F ) , H ( F ) , and H ( F ) is closed under matrix multiplication and under inverses, thus H ( F ) is a subgroup of GL n ( F ) . So H ( F ) is a group.

Write M ( a , b , c ) = ( 1 a b 0 1 c 0 0 1 ) . Then

M { F 3 H ( F ) ( a , b , c ) M ( a , b , c )

is bijective (surjective by definition of H ( F ) , and injective because M ( a , b , c ) = M ( c , d , e ) ( a , b , c ) = ( d , e , f ) ). Therefore | H ( F ) | = | F 3 | .

By part (a) and (b),

M ( a , b , c ) M ( a , b , c ) = M ( a + a , b + b + a c , c + c ) , M ( a , b , c ) 1 = M ( a , ac b , c ) .

The authors insist that we check associativity directly:

[ M ( a , b , c ) M ( a , b , c ) ] M ( a , b , c ) = M ( a + a , b + b + a c , c + c ) M ( a , b , c ) = M ( a + a + a , b + b + b + a c + a c + a c , c + c + c ) M ( a , b , c ) [ M ( a , b , c ) M ( a , b , c ) ] = M ( a , b , c ) M ( a + a , b + b + a c , c + c ) = M ( a + a + a , b + b + b + a c + a c + a c , c + c + c ) .

This shows that [ M ( a , b , c ) M ( a , b , c ) ] M ( a , b , c ) = M ( a , b , c ) [ M ( a , b , c ) M ( a , b , c ) ] , so the associativity of multiplication is checked.

(d)
The elements of H ( 𝔽 2 ) are ( 1 0 0 0 1 0 0 0 1 ) , ( 1 0 0 0 1 1 0 0 1 ) , ( 1 0 1 0 1 0 0 0 1 ) , ( 1 0 1 0 1 1 0 0 1 ) , ( 1 1 0 0 1 0 0 0 1 ) , ( 1 1 0 0 1 1 0 0 1 ) , ( 1 1 1 0 1 0 0 0 1 ) , ( 1 1 1 0 1 1 0 0 1 ) .

More shortly, H ( 𝔽 2 ) =

{ M ( 0 , 0 , 0 ) , M ( 0 , 0 , 1 ) , M ( 0 , 1 , 0 ) , M ( 0 , 1 , 1 ) , M ( 1 , 0 , 0 ) , M ( 1 , 0 , 1 ) , M ( 1 , 1 , 0 ) , M ( 1 , 1 , 1 ) }

The orders of these elements are

M | M |
M(0, 0, 0) 1
M(0, 0, 1) 2
M(0, 1, 0) 2
M(0, 1, 1) 2
M(1, 0, 0) 2
M(1, 0, 1) 4
M(1, 1, 0) 2
M(1, 1, 1) 4

For instance,

( 1 1 0 0 1 1 0 0 1 ) ( 1 1 0 0 1 1 0 0 1 ) = ( 1 0 1 0 1 0 0 0 1 ) ,

and

( 1 0 1 0 1 0 0 0 1 ) ( 1 0 1 0 1 0 0 0 1 ) = ( 1 0 0 0 1 0 0 0 1 ) ,

so M ( 1 , 0 , 1 ) 2 = M ( 0 , 1 , 0 ) , and M ( 0 , 1 , 0 ) 4 = I 3 , so | M ( 1 , 0 , 1 ) | = 4 .

Note: If we write r = M ( 1 , 1 , 1 ) and s = M ( 0 , 0 , 1 ) , then r 4 = s 2 = e , and rs = s r 3 . Moreover H ( 𝔽 2 ) has 8 elements. Therefore H ( 𝔽 2 ) D 8 .

(e)
Let M = M ( a , b , c ) be any nonidentity element of H ( R ) , so that ( a , b , c ) ( 0 , 0 , 0 ) .

Assume that δ = | M ( a , b , c ) | is finite. By induction, if ( a , b , c ) 3 , for all n , there is some real b n such that

M ( a , b , c ) n = M ( na , b n , nc ) ,

therefore M ( 0 , 0 , 0 ) = M ( a , b , c ) δ = M ( δa , b δ , δc ) . Thus δa = δc = 0 . Since δ is a positive integer, a = c = 0 , so M = M ( 0 , b , 0 ) .

A new induction shows that for all n ,

M ( 0 , b , 0 ) n = M ( 0 , nb , 0 ) .

Therefore M ( 0 , 0 , 0 ) = M ( 0 , b , 0 ) δ = M ( 0 , δb , 0 ) , thus δb = 0 and b = 0 . Therefore M = M ( 0 , 0 , 0 ) = I 3 .

So every nonidentity element of the group H ( ) has infinite order.

Verification of (d) with Sagemath:

sage: def M(a,b,c):
....:     return matrix([[1, a, b],[0, 1 , c],[0, 0, 1]])
....:
sage: F2 = GF(2); F2
Finite Field of size 2
sage: G = [ M(a,b,c) for a in F2 for b in F2 for c in F2]; G

[
[1 0 0]  [1 0 0]  [1 0 1]  [1 0 1]  [1 1 0]  [1 1 0]  [1 1 1]  [1 1 1]
[0 1 0]  [0 1 1]  [0 1 0]  [0 1 1]  [0 1 0]  [0 1 1]  [0 1 0]  [0 1 1]
[0 0 1], [0 0 1], [0 0 1], [0 0 1], [0 0 1], [0 0 1], [0 0 1], [0 0 1]
]
sage: def order(g):
....:     m = g;
....:     counter = 1
....:     while m != G[0]:
....:         counter += 1
....:         m = g * m
....:     return counter
....:
sage: l = [((g[0,1],g[0,2],g[1,2]), order(g)) for g in G]; l

[((0, 0, 0), 1),
 ((0, 0, 1), 2),
 ((0, 1, 0), 2),
 ((0, 1, 1), 2),
 ((1, 0, 0), 2),
 ((1, 0, 1), 4),
 ((1, 1, 0), 2),
 ((1, 1, 1), 4)]

User profile picture
2025-09-18 10:30
Comments