Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.5.2 (Tables for $S_3, D_8$ and $Q_8$.)

Exercise 1.5.2 (Tables for $S_3, D_8$ and $Q_8$.)

Write out the group tables for S 3 , D 8 and Q 8 .

Answers

I prefer Sudoku.

Proof. The product xy is at row x and column y .

  • Table for S 3 = σ , τ σ 3 = τ 2 = e , τσ = σ 2 τ = { e , σ , σ 2 , τ , στ , σ 2 τ } .

    We can take σ = ( 1 2 3 ) and τ = ( 1 2 ) , which gives the dictionnary

    e σ σ 2 τ στ σ 2 τ
    () ( 1 2 3 ) ( 1 3 2 ) ( 1 2 ) (1 3) (2 3)

    e σ σ 2 τ στ σ 2 τ
    e e σ σ 2 τ στ σ 2 τ
    σ σ σ 2 e στ σ 2 τ τ
    σ 2 σ 2 e σ σ 2 τ τ στ
    τ τ σ 2 τ στ e σ 2 σ
    στ στ τ σ 2 τ σ e σ 2
    σ 2 τ σ 2 τ στ τ σ 2 σ e
  • Table for D 8 = r , s r 4 = s 2 = e , sr = r 3 s = { e , r , r 2 , r 3 , s , rs , r 2 s , r 3 s } .

    (We may use ( r h s k ) ( r h s k ) = r h + ( 1 ) k h s k + k , in particular s ( r a s b ) = r a s b + 1 .)

    e r r 2 r 3 s rs r 2 s r 3 s
    e e r r 2 r 3 s rs r 2 s r 3 s
    r r r 2 r 3 e rs r 2 s r 3 s s
    r 2 r 2 r 3 e r r 2 s r 3 s s rs
    r 3 r 3 e r r 2 r 3 s s rs r 2 s
    s s r 3 s r 2 s rs e r 3 r 2 r
    rs rs s r 3 s r 2 s r e r 3 r 2
    r 2 s r 2 s rs s r 3 s r 2 r e r 3
    r 3 s r 3 s r 2 s rs s r 3 r 2 r e
  • Table for Q 8 :

    1 1 i i j j k k
    1 1 1 i i j j k k
    1 1 1 i i j j k k
    i i i 1 1 k k j j
    i i i 1 1 k k j j
    j j j k k 1 1 i i
    j j j k k 1 1 i i
    k k k j j i i 1 1
    k k k j j i i 1 1
User profile picture
2025-09-19 09:57
Comments