Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.7.13 (Kernel of the left regular action)

Exercise 1.7.13 (Kernel of the left regular action)

Find the kernel of the left regular action.

Answers

Proof. The left regular action is the map

{ G × G G ( g , a ) g a = ga .

The corresponding permutation representation is

φ { G S G g φ g , where φ g { G G g φ g ( a ) = ga .

If g G , then φ g = Id G if and only if for all a G , ga = a . In particular, ge = e , so g = e . Therefore

ker ( φ ) = { e } .

The kernel of the left regular action is { e } . So the left regular action is faithful. □

User profile picture
2025-10-05 09:50
Comments