Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.7.3 (Action $r \cdot (x,y) = (x + ry, y)$ from $\mathbb{R}$ on $\mathbb{R}^2$)

Exercise 1.7.3 (Action $r \cdot (x,y) = (x + ry, y)$ from $\mathbb{R}$ on $\mathbb{R}^2$)

Show that the additive group acts on the x , y plane × by r ( x , y ) = ( x + ry , y ) .

Answers

Proof. For all r , s and for all ( x , y ) 2 ,

(i)
r ( s ( x , y ) ) = r ( x + sy , y ) = ( x + sy + ry , y ) = ( x + ( r + s ) y , y ) = ( r + s ) ( x , y ) ,
(ii)
0 ( x , y ) = ( x + 0 y , y ) = ( x , y ) .

Therefore the additive group acts on 2 by r ( x , y ) = ( x + ry , y ) . □

Note: The map

φ { GL 2 ( ) r ( 1 r 0 1 )

is a group isomorphism, so a faithful matrix representation of the additive group , such that

φ ( r ) ( x y ) = ( 1 r 0 1 ) ( x y ) = ( x + ry y ) .

This explains the preceding action.

User profile picture
2025-10-04 08:23
Comments