Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.7.8 ($S_A$ acts on $\mathscr{P}_k(A)$)

Exercise 1.7.8 ($S_A$ acts on $\mathscr{P}_k(A)$)

Let A be a nonempty set and let k be a positive integer with k | A | . The symmetric group S A acts on the set B consisting of all subsets of A of cardinality k by σ { a 1 , , a k } = { σ ( a 1 ) , , σ ( a k ) } .

(a)
Prove that this is a group action.
(b)
Describe explicitly how the elements ( 1 2 ) and ( 1 2 3 ) act on the six 2 -element subsets of { 1 , 2 , 3 , 4 } .

Answers

Proof. Note that if X = { a 1 , a 2 , , a k } B , then σ ( a 1 ) , σ ( a 2 ) , , σ ( a k ) are distinct (because σ is injective), therefore σ X B .

(a)
If σ , τ are permutations in S A , and X = { a 1 , a 2 , , a k } B , then
  • σ ( τ X ) = σ ( τ { a 1 , a 2 , , a k } ) = σ { τ ( a 1 ) , τ ( a 2 ) , , τ ( a k ) } = { σ ( τ ( a 1 ) ) , σ ( τ ( a 2 ) ) , , σ ( τ ( a k ) ) } = ( σ τ ) { a 1 , a 2 , , a k } = ( σ τ ) X ,
  • If e = Id A , then

    e X = Id A { a 1 , a 2 , , a k } = { Id A ( a 1 ) , Id A ( a 2 ) , , Id A ( a k ) } = { a 1 , a 2 , , a k } = X .

Therefore S A acts on the set B by σ { a 1 , , a k } = { σ ( a 1 ) , , σ ( a k ) } .

(b)
For instance ( 1 2 ) { 1 , 2 } = { 2 , 1 } = { 1 , 2 } , ( 1 2 ) { 1 , 3 } = { 2 , 3 } , ( 1 2 ) { 1 , 4 } = { 2 , 4 } , ( 1 2 ) { 2 , 3 } = { 1 , 3 } , ( 1 2 ) { 2 , 4 } = { 1 , 4 } , ( 1 2 ) { 3 , 4 } = { 3 , 4 } ,

As expected, ( 1 2 ) induces a permutation φ ( 1 2 ) on B = 𝒫 2 ( [ [ 1 , 4 ] ) . Similarly

( 1 2 3 ) { 1 , 2 } = { 2 , 3 } ( 1 2 3 ) { 1 , 3 } = { 1 , 2 } , ( 1 2 3 ) { 1 , 4 } = { 2 , 4 } , ( 1 2 3 ) { 2 , 3 } = { 1 , 3 } , ( 1 2 3 ) { 2 , 4 } = { 3 , 4 } , ( 1 2 3 ) { 3 , 4 } = { 1 , 4 } .

So ( 1 2 3 ) induces also a permutation on B = 𝒫 2 ( [ [ 1 , 4 ] ) . □

User profile picture
2025-10-04 13:52
Comments