Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.7.9 ($S_A$ acts on $A^k$)

Exercise 1.7.9 ($S_A$ acts on $A^k$)

Do both parts of the preceding exercise with “ordered k -tuples” in place of “ k -elements subsets”, where the action on k -tuples is defined as above but with set braces replaced by parentheses.

Answers

Proof. If X = ( a 1 , a 2 , , a k ) A k , then σ ( X ) = ( σ ( a 1 ) , σ ( a 2 ) , , σ ( a k ) ) A k .

(a)
If σ , τ are permutations in S A , and X = ( a 1 , a 2 , , a k ) A k , then
  • σ ( τ X ) = σ ( τ ( a 1 , a 2 , , a k ) ) = σ ( τ ( a 1 ) , τ ( a 2 ) , , τ ( a k ) ) = ( σ ( τ ( a 1 ) ) , σ ( τ ( a 2 ) ) , , σ ( τ ( a k ) ) ) = ( σ τ ) ( a 1 , a 2 , , a k ) = ( σ τ ) X ,
  • If e = Id A , then

    e X = Id A ( a 1 , a 2 , , a k ) = ( Id A ( a 1 ) , Id A ( a 2 ) , , Id A ( a k ) ) = ( a 1 , a 2 , , a k ) = X .

Therefore S A acts on the set B by σ { a 1 , , a k } = { σ ( a 1 ) , , σ ( a k ) } .

(b)
For instance, S 3 acts on [ [ 1 , 4 ] ] 2 : ( 1 2 ) ( 1 , 1 ) = ( 2 , 2 ) , ( 1 2 ) ( 1 , 2 ) = ( 2 , 1 ) , ( 1 2 ) ( 1 , 3 ) = ( 2 , 3 ) , ( 1 2 ) ( 1 , 4 ) = ( 2 , 4 ) , ( 1 2 ) ( 2 , 1 ) = ( 1 , 2 ) , ( 1 2 ) ( 2 , 2 ) = ( 1 , 1 ) , ( 1 2 ) ( 2 , 3 ) = ( 1 , 3 ) , ( 1 2 ) ( 2 , 4 ) = ( 1 , 4 ) , ( 1 2 ) ( 3 , 1 ) = ( 3 , 2 ) , ( 1 2 ) ( 3 , 2 ) = ( 3 , 1 ) , ( 1 2 ) ( 3 , 3 ) = ( 3 , 3 ) , ( 1 2 ) ( 3 , 4 ) = ( 3 , 4 ) , ( 1 2 ) ( 4 , 1 ) = ( 4 , 2 ) , ( 1 2 ) ( 4 , 2 ) = ( 4 , 1 ) , ( 1 2 ) ( 4 , 3 ) = ( 4 , 3 ) , ( 1 2 ) ( 4 , 4 ) = ( 4 , 4 ) ,

As expected, ( 1 2 ) induces a permutation on [ [ 1 , 4 ] ] 2 .

Similarly:

( 1 2 3 ) ( 1 , 1 ) = ( 2 , 2 ) ( 1 2 3 ) ( 1 , 2 ) = ( 2 , 3 ) ( 1 2 3 ) ( 1 , 3 ) = ( 2 , 1 ) ,
User profile picture
2025-10-04 14:24
Comments