Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.1.13 (Additive orders of elements of $\mathbb{Z}/36 \mathbb{Z}$)

Exercise 1.1.13 (Additive orders of elements of $\mathbb{Z}/36 \mathbb{Z}$)

Find the orders of the following elements of the additive group 36 : 1 ¯ , 2 ¯ , 6 ¯ , 9 ¯ , 10 ¯ , 12 ¯ , 1 ¯ , 10 ¯ , 18 ¯ .

Answers

Proof. As in Exercise 11,

| k ¯ | = 36 k 36 .

This gives

x 1 ¯ 2 ¯ 6 ¯ 9 ¯ 10 ¯ 12 ¯ 1 ¯ 10 ¯ 18 ¯
| x | 36 18 6 4 18 3 36 18 2

With Sagemath:

sage: G = Integers(36)
sage: for k in [1,2,6,9,10,12,-1,-10,-18]:
....:     print(k,G(k).additive_order())
....:
(1, 36)
(2, 18)
(6, 6)
(9, 4)
(10, 18)
(12, 3)
(-1, 36)
(-10, 18)
(-18, 2)

User profile picture
2026-01-07 12:08
Comments