Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.1.14 (Multiplicative orders of elements of $(\mathbb{Z}/36\mathbb{Z})^\times$)

Exercise 1.1.14 (Multiplicative orders of elements of $(\mathbb{Z}/36\mathbb{Z})^\times$)

Find the orders of the following elements of the multiplicative group ( 36 ) × : 1 ¯ , 1 ¯ , 5 ¯ , 13 ¯ , 13 ¯ , 17 ¯ .

Answers

Proof. For instance,

5 ¯ 2 = 25 ¯ = 11 ¯ , 5 3 ¯ = 55 ¯ = 17 ¯ , 5 6 ¯ = 17 ¯ 2 = 289 ¯ = 8 36 + 1 ¯ = 1 ¯ .

Since 5 6 ¯ = 1 ¯ and 5 2 ¯ 1 ¯ , 5 ¯ 3 1 ¯ , we obtain | 5 ¯ | = 6 .

More generally,

x 1 ¯ 1 ¯ 5 ¯ 13 ¯ 13 ¯ 17 ¯
| x | 1 2 6 3 6 2

With Sagemath:

sage: l = [1,-1,5,13,-13,17]
sage: for k in l:
....:     print(k, ’=>’, G(k).multiplicative_order())
....:
(1, ’=>’, 1)
(-1, ’=>’, 2)
(5, ’=>’, 6)
(13, ’=>’, 3)
(-13, ’=>’, 6)
(17, ’=>’, 2)

User profile picture
2026-01-07 12:53
Comments